CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 555

_id caadria2007_459
id caadria2007_459
authors Yue, Kui; Ramesh Krishnamurti
year 2007
title Extraction of Building Geometry from Range Images of Construction Sites
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.b9q
summary Modeling from range images offers promise for cost effective digital modeling of construction sites. However, most commercial software lack support for automatic alignment of range images and automatic geometry extraction – nor also do they deal with the time-dimension. This can hinder automatic digital modeling. In this paper, we describe a solution that addresses these drawbacks.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2007_231
id ecaade2007_231
authors Díaz, Joaquin
year 2007
title Holistic Cost-Information Management in Building and Construction
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 533-539
doi https://doi.org/10.52842/conf.ecaade.2007.533
summary In the building and construction industry the need for a more holistic enterprise-overlapping information exchange is obvious. Especially the management of cost-information from the very beginning design-phase to the point of controlling and billing is a very important task. Co-operation between architects, construction companies, engineering consultants, and authorities using digital information exchange becomes a strategic success factor. Solutions which cover all stages of the value creation chain such as e-tendering, cost-estimation, cost-determination, and production must be anytime accessible and platform independent. While the basic conditions of IT-infrastructure (digital networks) are today fully sufficient, the compatibility between the systems and the information to be exchanged represent the largest problem. The main problem is in the range of different systems and various information domains. Transformations and adjustments of the exchanged information still cost nearly 40 % of design and engineering time. Efficient information exchanges require a universal exchange format, which makes the existing systems compatible. This paper describes the German approach for a holistic information exchange in the building and construction industry. Furthermore the new approach to integrate the German GAEB Standard and the Industrial Foundation Classes (IFC) and the possibilities that can be obtained out of this integration will be explained.
keywords GAEB standard, e-tendering, cost-estimation and cost management, bidding and billing procedures, integration of cost and graphical information (BIM)
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2007_166
id ecaade2007_166
authors Liapi, Katherine A.
year 2007
title An Integrative Design and Spatial Visualization System for Cable Strut Self-tensioned Structures
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 27-34
doi https://doi.org/10.52842/conf.ecaade.2007.027
summary Novel conceptions of structures consisting of spatial formations of struts and cables present a uniquely defined morphology and structural performance, and offer opportunities for innovative applications in building design. A common feature of these structures is that their spatial geometry is not “a priori” given. This paper is focused on a specific type of cable-strut structure that occurs from the assembly of self tensioned cable-strut modules The spatial configuration of these structures is very complex and necessitated the development of elaborate geometric algorithms that permit the generation of their formal geometry in a virtual 3D environment. To facilitate both the design and the construction of such structures, a spatial visualization system, which integrates a) algorithms for initial form generation, b) geometric parameters that simulate construction stiffening processes, and c) appropriate structural analysis methods, has been developed. The structural organization and parts of this system are presented in this paper. The system renders feasible the exploration of alternate geometries with various levels of pre-stress and displays initial and final configuration of the structure. It also allows for structural analysis data visualization. Examples of projects designed with the assistance of this system are included and discussed.
keywords Cable-strut structures, tensegrity structures, modeling
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2007_119
id caadria2007_119
authors Mokhtar, Ahmed
year 2007
title BIM as Learning Media for Building Construction
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.h4d
summary A fundamental module of any recognized architecture curricula is the understanding of buildings construction. A major component of such understanding is learning how to put together a structure system for a building. The difficulty most students find is not in knowing these structure systems in their abstract form, rather in applying this knowledge while making design decisions. Selecting the appropriate system and adapting it to the difficult conditions that accompany a particular design is the more challenging aspect to grasp. Instructors use various techniques to help students overcome this challenge. These techniques range from simply showing photos to requiring students to construct a building. This paper describes a new technique experimented with by the author. It is based on using Building Information Modeling (BIM) software as a learning media to help students face the challenge. The paper discusses the technique and the details of the experiment through a case study. The paper eventually reports on what the experiment reveals regarding the advantages and disadvantages of using BIM as a learning media.
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2008_180
id sigradi2008_180
authors Vincent, Charles
year 2008
title Gulliver in the land of Generative Design
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The current trend in architectural design towards architectural computing has been treated both from a philosophical standing point and as an operational systems’ problem, in a quest for explications which could at last break ground for a more broad development and adoption of design tools. As Kostas Terzidis (2007) puts it, the intuitiveness that architects have put on so high a pedestal seems to be the central issue to be dealt with by both views. There seems to be no apparent shortcut toward the reconciliation between traditional practice and new media and most certainly it is not only a problem of interface design, but one of design method clarification and reinterpretation of those methods into computing systems. Furthermore, there’s no doubt left as to whether computing systems can generate such new patterns as to impact our own understanding of architecture. But even if computer algorithms can make possible the exploration of abstract alternatives to an abstract initial idea, as in Mathematica and Processing, the issue of relating abstract and geometric representations of human centered architecture lays in the hands of architects, programmers or, better yet, architect-programmers. What seems now to be the relevant change is that architectural design might escape from the traditional sequence embedded in the need – program – design iterations – solution timeline, substituted by a web of interactions among differing experimental paths, in which even the identification of needs is to be informed by computing. It is interesting to note that the computational approach to architectural design has been praised for the formal fluidity of bubbles and Bezier shapes it entails and for the overcoming of functionalist and serialization typical of modern architecture. That approach betrays a high degree of canonic fascination with the tools of the trade and very little connection to the day to day chores of building design. On the other hand, shall our new tools and toys open up new ways of thinking and designing our built landscape? What educational issues surface if we are to foster wider use of the existing technologies and simultaneously address the need to overtake mass construction? Is mass customization the answer for the dead end modern architecture has led us to? Can we let go the humanist approach begun in Renascence and culminated in Modernism or shall we review that approach in view of algorithmic architecture? Let us step back in time to 1726 when Swift’s ‘Travels into Several Remote Nations of the World by Lemuel Gulliver’ was first published. In Swift’s fierce critic of what seemed to him the most outrageous ideas, he conceived a strange machine devised to automatically write books and poetry, in much the same generative fashion that now, three centuries later, we begin to cherish. “Every one knew how laborious the usual method is of attaining to arts and sciences; whereas by his contrivance, the most ignorant person at a reasonable charge, and with a little bodily labour, may write books in philosophy, poetry, politicks, law, mathematics and theology, without the least assistance from genius or study. He then led me to the frame, about the sides whereof all his pupils stood in ranks. It was twenty foot square, placed in the middle of the room. The superficies was composed of several bits of wood, about the bigness of a dye, but some larger than others. They were all linked together by slender wires. These bits of wood were covered on every square with paper pasted on them; and, on these papers were written all the words of their language in their several moods, tenses, and declensions, but without any order. The professor then desired me to observe, for he was going to set his engine at work. The pupils at his command took each of them hold of an iron handle, whereof there were forty fixed round the edges of the frame; and giving them a sudden turn, the whole disposition of words was entirely changed. He then commanded six and thirty of the lads to read the several lines softly as they appeared upon the frame; and where they found three or four words together that might make part of a sentence, they dictated to the four remaining boys who were scribes. This work was repeated three or four times, and at every turn the engine was so contrived, that the words shifted into new places, as the square bits of wood moved upside down.” (Jonathan Swift, Gulliver’s Travels, A Voyage to Balnibarbi) What astonishing forecast did Swift show in that narrative that, in spite of the underlying incredulity and irony, still clarifies our surprise when faced to what might seem to some of us just an abandonment of all that architects and designers have cherished: creativeness and inventiveness. Yet, we could argue that such a radical shift in paradigm occurred once when master builders left the construction ground and took seat at drafting boards. The whole body of design and construction knowledge was split into what now seem to us just specialties undertaken by more and more isolated professionals. That shift entailed new forms of representation and prediction which now each and all architects take for granted. Also, Cartesian space representation turned out to be the main instrument for professional practice, even if one can argue that it is not more than the unfolding of stone carving techniques that master builders and guilds were so fond of. Enter computing and all its unfolding, i.e. DNA coding, fractal geometry, generative computing, nonlinear dynamics, pattern generation and cellular automata, as a whole new chapter in science, and compare that to conical perspective, descriptive and analytical geometry and calculus, and an image begins to form, delineating a separation between architect and digital designer. In previous works, we have tried approaching the issues regarding architects education in a more consensual way. But it seems now that the whole curricular corpus might be changed as well. The very foundations upon which we prepare future professionals shall change, not only in College, but in High School as well. In this paper, we delve further into the disconnect between current curricula and digital design practices and suggest new disciplinary grounds for a new architectural education.
keywords Educational paradigm; Design teaching; Design methods;
series SIGRADI
email
last changed 2016/03/10 10:02

_id cf2007_115
id cf2007_115
authors Whiting, Emily; Jonathan Battat and Seth Teller
year 2007
title Topology of Urban Environments: Graph construction from multi-building floor plan data
source Computer Aided Architectural Design Futures / 978-1-4020-6527-9 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Futures / 978-1-4020-6527-9] Sydney (Australia) 11–13 July 2007, pp. 115-128
summary This paper introduces a practical approach to constructing a hybrid 3D metrical–topological model of a university campus or other extended urban region from labeled 2D floor plan geometry. An exhaustive classification of adjacency types is provided for a typical infrastructure, including roads, walkways, green-space, and detailed indoor spaces. We extend traditional lineal techniques to 2D open spaces, incorporating changes in elevation. We demonstrate our technique on a dataset of approximately 160 buildings, 800 floors, and 44,000 spaces spanning indoor and outdoor areas. Finally, we describe MITquest, a web application that generates efficient walking routes.
series CAAD Futures
email
last changed 2007/07/06 12:47

_id ecaade2007_155
id ecaade2007_155
authors Bonwetsch, Tobias; Bärtschi, Ralph; Kobel, Daniel; Gramazio, Fabio; Kohler, Matthias
year 2007
title Digitally Fabricating Tilted Holes
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 793-799
doi https://doi.org/10.52842/conf.ecaade.2007.793
summary Digital fabrication of building components by means of computer numerically controlled (CNC) machines is of high interest for architects and the building industry. Common design software does not allow for utilizing the potential that lies within these new technologies. To fully exploit the power of digital fabrication, new design paradigms have to be explored. In our design studios we implement direct scripting, the use of images to control parameters, as well as dynamical and rule based systems, which enables the designer to exploit the possibilities of digital fabrication. This paper provides an overview of the tools we developed. We will present some of the results from these classes and discuss its implications for future tool sets. It is essential to apply the knowledge of production methods at the starting point of the design process, in order to fully benefit from these new technologies. We believe that novel design strategies emerge out of this shift in production. Our goal is to integrate the principles of digital fabrication into the design process, resulting in a more valuable and sustainable architecture.
keywords Digital fabrication, CNC, design tools
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2007_094
id ecaade2007_094
authors Buattour, Mohamed; Halin, Gilles; Bignon, Jean Claude
year 2007
title Management system for a Virtual Cooperative Project
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 125-131
doi https://doi.org/10.52842/conf.ecaade.2007.125
summary The paper presents on-going research aimed at the support of the management of building projects and the aid cooperative design. Today, The use of systems adapted to the cooperative design assistance for the building domain is complex. This results from the complexity of the cooperative work (difficulties in tracking actor’s work, lack of most of the required information, coordination problems, implicit nature of most of the construction activities etc.) The paper will briefly review two data exchanging modes that we had defined. After, on the basis of this concept of cooperative design we describe a new model of a virtual environment aimed to takes into account the relational organization of the project and the semantic meaning of works. This research represents a new approach because it not based on management of documents but on all data relative to works. Finally, we use this new model for defining a design-aided tool, to deduce advantages and limits of the “Virtual Cooperative Project”. This system lets geographically dispersed project actors model the project context of a building. More specifically, it allows interpreting, using and exchanging project works in a centralized virtual environment during the building life cycle. This system uses IFC objects which associate in the same model the semantic and the 3D representation of building works.
keywords Cooperation model, cooperative work design, project management, digital mock-up
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac20075402
id ijac20075402
authors Burry, Jane R.
year 2007
title Mindful Spaces: Computational Geometry and the Conceptual Spaces in which Designers Operate
source International Journal of Architectural Computing vol. 5 - no. 4, pp. 611-624
summary Combinatorial computational geometry, while dealing with geometric objects as discrete entities, provides the means both to analyse and to construct relationships between these objects and relate them to other non-geometrical entities. This paper explores some ways in which this may be used in design through a review of six, one-semester-long design explorations by undergraduate and postgraduate students in the Flexible Modeling for Design and Prototyping course between 2004 and 2007. The course focuses on using computational geometry firstly to construct topologically defined design models based on graphs of relationships between objects (parametric design,) and concurrently to output physical prototypes from these "flexible models"(an application of numerical computational geometry). It supports students to make early design explorations. Many have built flexible models to explore design iterations for a static spatial outcome. Some have built models of real time responsive dynamic systems. In this educational context, computational geometry has enabled a range of design iterations that would have been challenging to uncover through physical analogue means alone. It has, perhaps more significantly, extended the students' own concept of the space in which they design.
series journal
email
last changed 2008/02/25 20:30

_id acadia07_104
id acadia07_104
authors Chen, Chien-Lin; Johnson, Brian R.
year 2007
title DVIN: A Dual View Information Navigation System
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 104-109
doi https://doi.org/10.52842/conf.acadia.2007.104
summary Differences in the preferred modes of representation of architects and their clients create challenges to their collaboration in the design process. Traditional two-dimensional drawings such as plans, sections and elevations form the backbone of architectural representation, anchoring text labels to record relevant non-graphical information. Nominally geometric “slices” through the proposed building volume, these drawings employ abstractions and conventions unique to professional practice. In contrast, non-architects think about building configuration largely through experiential or photographic perspective. This challenge increases over the life of the project. Simple drawings, such as those used in schematic design, are easily understood by all parties. However, as the building design develops the architects encode more and more design detail through the drawing conventions of construction documents, inadvertently making this detail less and less accessible to non-architects. We present DVIN, a prototype system that uses coordinated plan and perspective views for navigation of building information models, linking the information to an individual’s spatial navigation skills rather than their document navigation skills. This web-based application was developed using Java and VRML. The prototype makes it easier for naive users to locate and query building information, whether they are a client, a facility manager, or possibly an emergency responder.

*** NOTE: two pages missing from the printed proceedings have been appended to the PDF version of this paper and numbered 'erratum page 1' and 'erratum page 2' ***

series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2007_050
id ecaade2007_050
authors Donath, Dirk; Böhme, Luis Felipe González
year 2007
title Constraint-Based Design in Participatory Housing Planning
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 687-694
doi https://doi.org/10.52842/conf.ecaade.2007.687
summary The research presented in this paper deals with the yet unexplored development of a constraint-based design strategy to support participatory housing planning processes in Latin America. The article discusses the implementation criteria of a constraint satisfaction approach to solving the building bulk design problem. This elementary problem to the architecture practice, is concerned with the synthesis of the boundary geometry from the volume, shape and allocation of the building and any part thereof located inside a given zoning lot. A legal solution to a building bulk design problem is a building cubature that complies with all the applicable bulk regulations. The case study applies to the common class of single-family house units produced in Chile and the regulatory framework implemented there. Two different computer implementation criteria are being tested in an ongoing series of trials. The first, and most extensively developed, makes use of Maxon’s XPresso® visual scripting environment to set up a semi-automated controllable design environment that allows to create parametric feature-based 3D models of building bulk solutions. The second approach is currently being tested by using Ilog’s OPL Studio® constraint programming environment to achieve fully automated search and 2D graphic visualization of the complete set of solutions to separate subdomains of the bulk problem.
keywords Constraint-based design, constraint satisfaction problems, building bulk design, participatory planning, low-income housing
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2007_001
id ascaad2007_001
authors Germen, M.
year 2007
title Virtual Architecture: Reconstructing Architecture Through Photography
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 1-16
summary The concept of construction in architectural design process is a temporary action that exists for a while and transforms itself into another product; i.e. the final building to be inhabited. Construction site can be taken as a podium where a play-to-remain-incomplete is being staged. The incompleteness causes us to dream, due to the fact that a complete building loses its narrative potential as it informs us about all the necessary pieces that constitute the whole: There is no puzzle to solve... Construction in this sense is like a historical ruin; Paul Zucker asserts that "ruins have held for a long time a unique position in the visual, emotional, and literary imagery of man. They have fascinated artists, poets, scholars, and sightseers alike. Devastated by time or willful destruction, incomplete as they are, they represent a combination of man-made forms and of organic nature." Architectural photography has the potential of re-creating this puzzle back again in order to bring an alternative representation to architecture. The architectural photographer is sometimes offered the freedom of reinterpreting, reconstructing architecture in order to be able to present a novel virtual perception to the audience. The idea here is to get some spatial clues that can later be used in other architectural projects. I was personally invited to two different concept exhibits in which I was given the freedom of inventing a virtual architecture through photography. The concept text written for one of these exhibits goes as follows: “I went, saw, stopped, attempted to grasp and enter it, looked at construction process and workers with respect, tried to internalize, wanted to claim it for a while, dreamed of creating a microcosm out of the macrocosm I was in, shot and shot and shot and finally selected: The created world, though intended for all, was probably quite a personal illusion...” Virtual architecture is a term used for architecture specifically created in the computer environment and never used in the realm of architectural photography. People like Piranesi, Lebbeus Woods, M.C. Escher, Marcos Novak, etc. previously dreamed about architectures that could exist virtually on paper, screen, digital environments. This paper will try to prove that this practice of (re)designing architecture virtually can be transferred to one of the most important realms of visuality: Photography. Various digital processes like stitching multiple photos together and mirroring images in image editing software like Photoshop, allow this virtual architecture to take place in the computer environment. Following this, I propose to raise the term “snap architecture” to connect it to the frequently referred concept of “paper architecture.”
series ASCAAD
email
last changed 2008/01/21 22:00

_id ecaade2007_216
id ecaade2007_216
authors Hamid, Bauni
year 2007
title Mapping Design Process into Process Design: Implementing Collaborative Design from Social Psychological Approaches
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 711-716
doi https://doi.org/10.52842/conf.ecaade.2007.711
summary In this paper we view the process of collaboration as a social setting, rather than a problem of communication. It involves and is impacted by social, non-technical aspects, such as lack of shared understanding, conflict, availability and motivation of the participants, and other factors that can facilitate or impede the goals of the collaborative enterprise. We propose to use a social and psychological approach. The ideal model should be a collaborative design system that can facilitate the socially constructed interactions among participants, as well as the communication of information. The proposed system should enable participants to assess the typical problems of collaboration. We build up our effort towards this goal by developing a representation system of collaborative design process. In this research we attempt to map collaborative design process into process design by using our proposed representation system. Our intention is to enable the existing system visually representing the integration of design stage to the whole construction process: since project planning until building operation.
keywords Design process: process design, collaborative design, social psychology
series eCAADe
email
last changed 2022/06/07 07:50

_id ascaad2007_052
id ascaad2007_052
authors Hamza, N. and M. Horne
year 2007
title Building Information Modelling: Empowering Energy Conscious Design
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 661-670
summary The increasing awareness of climate change and carbon dioxide emissions from the built environment is resulting in the need to visualize the environmental performance of buildings. One of the recent drivers in the UK has been the tightening of building regulations relating to energy consumption in buildings, mandating all buildings to be performance evaluated by accredited environmental simulation tools to test their carbon dioxide emission against set targets. Currently there is major confusion on all levels from architects to building control officers and contractors on how to engrain energy consciousness principles in the design and construction of buildings. Within this context, ‘Building Information Modelling’ that is linked to ‘Building Performance Modelling’ is increasingly being looked upon as a tool to facilitate the communication between the design team and contractors and to provide a transparent information model on the specification and targeted energy consumption of all new/ refurbished buildings to all parties involved. In this paper, analysis of the benefits and drawbacks of current efforts to combine those two comprehensive databases will be investigated. A sample of main software development companies, architects and contractors, using semi-structured interviews is undertaken to find out how Building Integrated Modelling (BIM) and Building Performance Modelling (BPM) can support the design and construction teams to deliver energy conscious buildings.
series ASCAAD
email
last changed 2008/01/21 22:00

_id ijac20075403
id ijac20075403
authors Holzer, Dominik; Hough, Richard; Burry, Mark
year 2007
title Parametric Design and Structural Optimisation for Early Design Exploration
source International Journal of Architectural Computing vol. 5 - no. 4, pp. 625-643
summary The investigation presented in this paper focuses on the following questions: How can engineering and architectural expertise, assisted by a process of digital optimisation, promote structural awareness regarding design alterations in the conceptual design stages? Can building geometry be set up computationally to render it sensitive to structural input? Which software tools are required to foster this interaction and what kind of decision support is needed to allow both architects and structural engineers to interact concurrently in this optimisation process? The authors of this paper form a team of researchers and practitioners from architectural and structural engineering background who combine their efforts to address the issue of interconnecting design intelligence across disciplines and advancing revised work methodologies in practice assisted by academic research. The research has shown that an integrated transfer of design information between architectural and structural designers in the early stages is beneficial to the collaboration if experts from both professions agree on common goals and define suitability rules that guide optimisation processes from the very beginning. To enable this, software tools are required that provide ad hoc decision support to create a wider array of informed design alternatives from which to choose.
series journal
email
last changed 2008/02/25 20:30

_id caadria2007_423
id caadria2007_423
authors Holzer, Dominik; Mark C. Burry and Richard Hough
year 2007
title Linking Parametric Design and Structural Analysis to Foster Transdisciplinary Design Collaboration
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.c6q
summary The investigation presented in this paper focuses on the following questions: How can engineering and architectural expertise guide a process of digital optimisation and add structural ‘awareness’ in real time to aesthetic considerations (or vice versa)? How can building geometry be set up computationally in order to render it ‘sensitive’ to structural input? Which tools are required to foster this interaction? The authors of this paper form a team of researchers and practitioners from architectural and engineering background who combine their efforts to address the issue of interconnecting design intelligence across disciplines and advancing work methodologies in practice assisted by academic research. A live case study project is presented as a test scenario in order to find answers the above questions.
series CAADRIA
email
last changed 2022/06/07 07:50

_id bsct_jiraschek
id bsct_jiraschek
authors Jiraschek, Roberta
year 2007
title Improving Child Safety in Residential Buildings via Architectural Design and Technology Integration
source Vienna University of Technology; Building Science & Technology
summary This work intends to create design guidelines based on the classification of design elements in residential buildings according to risk levels. It suggests the inclusion of safety aspects in children’s immediate environment by better design solutions and technologies which can help to prevent home accidents that mainly affect children aged between 0 and 4 years. The guidelines could help to create new building and design standards for architects and the building industry. They are based on research, conducted mainly in the European Union and the United States of America, into regulations and programs focusing on the prevention of home accidents. This work may be of benefit to parents, manufacturers, the building industry, architects and governments. Parents may benefit, obviously, because they get information on how to decrease the number of hazards within their children’s environment. It may help manufacturers improve their safety standards. Consumers may choose from a range of safer products. It may prompt the building industry to create safer designs and products thus avoiding liability claims. It may inspire architects to a more safety-oriented design. Finally governments could reduce health costs – in Austria alone, for example, more than € 3.4 billion a year are spent on home and leisure accidents.
keywords children, accident prevention, hazards, risk assessment, design guideline
series thesis:MSc
type normal paper
email
more http://cec.tuwien.ac.at
last changed 2007/07/16 17:55

_id cf2007_045
id cf2007_045
authors Kaga, Atsuko; Masahiro Kawaguchi and Tomohiro Fukuda
year 2007
title Simulation of an Historic Building Using a Tablet MR System
source Computer Aided Architectural Design Futures / 978-1-4020-6527-9 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Futures / 978-1-4020-6527-9] Sydney (Australia) 11–13 July 2007, pp. 45-58
summary To depict characteristics of historical buildings, digital archives must display visual information about structures and their construction. This study defines the components used for three-dimensional (3D) models of framework construction. Framework construction has heretofore portrayed structures through animation using VHS or Hi-Vision video. This paper describes a method to facilitate exhibition through interactive simulation using animation and real-time images. Furthermore, a Tablet MR can be used as an effective simulation tool for studying historical buildings in on-site models. For education about historical wooden-framework architecture, increased interactive potential according to users’ needs will be increasingly necessary.
series CAAD Futures
email
last changed 2008/10/28 07:19

_id ascaad2007_007
id ascaad2007_007
authors Kaka, Ammar; Yahaya Ibrahim, Timothy Lukins and Emanuele Trucco
year 2007
title The Development of an Automated Progress Measurement System for Construction Work Packages
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 81-86
summary The challenges associated with collecting accurate data on the progress of construction have long been recognised. Traditional methods often involve human judgment, high costs, and are too infrequent to provide managers with timely and accurate control data. The aim of this study is to propose a prototype system that employs Computer Vision (CV) techniques to report on progress for components supplied from an integrated Building Information Model (BIM). This model stores and relates this feedback to a representation of the work breakdown structure (WBS) that assigns components to work packages. In this paper we present an overview of the actual system – from the theoretical and technical challenges encountered.
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:35

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_647498 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002