CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 549

_id ascaad2007_055
id ascaad2007_055
authors Mallasi, Z.
year 2007
title Applying generative modeling procedure to explore architectural forms
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 697-712
summary Computer generated 3D forms using generative procedures have matured in the last decade and now considered as a tangible approach for realizing architectural design ideas. As fascinating as the approach might be, it is still lacking actual application in the early architectural design process. There are many reasons for this, among them: it has many implications over the architectural design process mainly the practicality of design during the conceptual design stage; it is cumbersome to develop construction drawings for complex architectural forms; and the necessity for producing conceptual designs quickly in less time as design requirements and decisions are constantly being changed. This paper initially reports on a practical development of a computer program which generates architectural massing designs based on integrating forms generation technique in a design scheme. The influence for this development was inspired by Spirolaterals technique used in generating complex 3D architectural forms that are based on parametric shape configuration. The development has three goals: to review the principles for constructing generative forms in the conceptual design stage using simple CAD tools, to assist in the production of design schemes based on a few basic shapes and rules, and to explore 3D forms finding and generation without the need to write a complicated computer program that are difficult to produce by hand. The development resulted in generating an interesting number of 3D compositions. The author applied this technique to experiment during the production of a design scheme. The paper hence describes the current development of ArchiGen tool to produces generative 3D forms utilizing ArchiCAD © GDL programming language. The tool is embedded within ArchiCAD for generating 3D shapes. One of the main features of this implementation is that users are able to sketch 2D shapes and the tool will deform its three dimensional generation. Moreover, the user being able to abstract the architectural character from the resulting complex 3D shapes. This development extends current related work by allowing the designer to load shapes into ArchiGen which acts as vocabulary of shapes for a design scheme constraints. It is intended from this work to inspire future work focusing on using generative tools in the early conceptual design stages.
series ASCAAD
email
last changed 2008/01/21 22:00

_id ascaad2007_058
id ascaad2007_058
authors Abdelhameed, W. and Y. Kobayashi
year 2007
title Developing a New Approach of Computer Use ‘KISS Modeling’ for Design-Ideas Alternatives of Form Massing: A framework for three-Dimensional Shape Recognition in Initial Design Phases
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 745-756
summary This research aims at developing a new approach called ‘KISS Modeling’. KISS is generally a rule of ‘Keep It Simple, Stupid’ that will be applied in modeling process investigated and presented by the research. The new approach is implemented in a computer program ‘KISS Modeling’ that generates three dimensional forms based on simplifying the concept of shape recognition in design. The research, however, does not employ totally concepts of shape recognition or shape understanding in Artificial Intelligence and psychology. The research, in summary, investigates and describes: 1) a new approach of computer use contributing to generating design-ideas alternatives of form massing in initial design phases, within a simple way that any designer can understand at single glance, 2) implementation of shape recognition for generative three dimensional forms, 3) function to generate different outputs from different recognition, and 4) case studies introduced through applications and functions of the three dimensional modeling system presented by the research. The research concluded that the introduced processes help the user improve the management of conceptual designing through facilitating a discourse of his/her modeling of design-ideas massing.
series ASCAAD
email
last changed 2008/01/21 22:00

_id bsct_kourkoutas
id bsct_kourkoutas
authors Kourkoutas, Vassilios
year 2007
title Parametric Form Finding in Contemporary Architecture
source Vienna University of Technology; Building Science & Technology
summary The search of new geometry has been during the last years an interesting subject for Contemporary Architecture. As the 21st century brought a new era for architectural design, CAD programs have evolved together with the idea of Form Finding. The possibilities offered make the collaboration of the architect with the computer now possible in terms of searching the appropriate form for given cases. As the analysis of contemporary architectural pieces has indicated, the procedure of architectural design can be semi-automated. Parametric Form Finding is transferring generative approaches into the architectural design workflow by introducing a set of rules to describe the constrains of the form. Given this context, two methods have been realized, which are guided by the user by providing basic two dimensional shapes, restrictions and form characteristics. The approach is fitted in a plug-in for the modeling environment of Rhinoceros that generates three dimensional form based on the user?s input. The methods followed are being evaluated.
keywords Parametric, Form Finding, Rhinoceros, plug-in
series thesis:MSc
type normal paper
email
more http://cec.tuwien.ac.at
last changed 2007/07/22 15:29

_id ecaade2007_009
id ecaade2007_009
authors Gün, Onur Yüce
year 2007
title Composing the Bits of Surfaces in Architectural Practice
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 859-868
doi https://doi.org/10.52842/conf.ecaade.2007.859
summary Emergent design tools; with enhanced modeling and parametric manipulation capabilities are encouraging the exploration of new geometric typologies in the field of architecture. Designers are not only finding more opportunities to work with geometries of higher complexities but also becoming able to update their designs with simple formulations. After a decade of proximity with free form modeling tools, architects now have to become more aware of the critical relationship of design and construction. When the design is performed without taking the constraints of the construction the inefficient method of geometric post-rationalization unavoidably has to take place. So, the knowledge of the rationale should be applied from the very beginning of the design processes, and the digital models should be informed and controlled while being developed. This paper will present analytical strategies and methods developed for working with non-standard geometries in a geometrically and parametrically controlled environment. Each method is supported with custom scripts which run in both parametric and non-parametric computer aided design (CAD) platforms. Each script and method is manipulated for the next project over time and the computational tools created build up a library of surface generation, manipulation and subdivision tools.
keywords Parametric, surface, construction, Generative Components, Rhino Script
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac20075103
id ijac20075103
authors Nir, Eyal
year 2007
title From No-Dimensions to N-Dimensions with Parametric Point-Clouds
source International Journal of Architectural Computing vol. 5 - no. 1, pp. 46-59
summary This paper presents an innovative approach towards parametric design using point-clouds as design media. Exposing the internal numeric representation of digital models led to the development of parametric point-clouds as design drivers. A parametric point-cloud concept is presented in this paper, exploring its potential application for behavior modeling, generative design and performance-driven design of building envelopes.
series journal
email
last changed 2007/06/14 12:11

_id sigradi2008_180
id sigradi2008_180
authors Vincent, Charles
year 2008
title Gulliver in the land of Generative Design
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The current trend in architectural design towards architectural computing has been treated both from a philosophical standing point and as an operational systems’ problem, in a quest for explications which could at last break ground for a more broad development and adoption of design tools. As Kostas Terzidis (2007) puts it, the intuitiveness that architects have put on so high a pedestal seems to be the central issue to be dealt with by both views. There seems to be no apparent shortcut toward the reconciliation between traditional practice and new media and most certainly it is not only a problem of interface design, but one of design method clarification and reinterpretation of those methods into computing systems. Furthermore, there’s no doubt left as to whether computing systems can generate such new patterns as to impact our own understanding of architecture. But even if computer algorithms can make possible the exploration of abstract alternatives to an abstract initial idea, as in Mathematica and Processing, the issue of relating abstract and geometric representations of human centered architecture lays in the hands of architects, programmers or, better yet, architect-programmers. What seems now to be the relevant change is that architectural design might escape from the traditional sequence embedded in the need – program – design iterations – solution timeline, substituted by a web of interactions among differing experimental paths, in which even the identification of needs is to be informed by computing. It is interesting to note that the computational approach to architectural design has been praised for the formal fluidity of bubbles and Bezier shapes it entails and for the overcoming of functionalist and serialization typical of modern architecture. That approach betrays a high degree of canonic fascination with the tools of the trade and very little connection to the day to day chores of building design. On the other hand, shall our new tools and toys open up new ways of thinking and designing our built landscape? What educational issues surface if we are to foster wider use of the existing technologies and simultaneously address the need to overtake mass construction? Is mass customization the answer for the dead end modern architecture has led us to? Can we let go the humanist approach begun in Renascence and culminated in Modernism or shall we review that approach in view of algorithmic architecture? Let us step back in time to 1726 when Swift’s ‘Travels into Several Remote Nations of the World by Lemuel Gulliver’ was first published. In Swift’s fierce critic of what seemed to him the most outrageous ideas, he conceived a strange machine devised to automatically write books and poetry, in much the same generative fashion that now, three centuries later, we begin to cherish. “Every one knew how laborious the usual method is of attaining to arts and sciences; whereas by his contrivance, the most ignorant person at a reasonable charge, and with a little bodily labour, may write books in philosophy, poetry, politicks, law, mathematics and theology, without the least assistance from genius or study. He then led me to the frame, about the sides whereof all his pupils stood in ranks. It was twenty foot square, placed in the middle of the room. The superficies was composed of several bits of wood, about the bigness of a dye, but some larger than others. They were all linked together by slender wires. These bits of wood were covered on every square with paper pasted on them; and, on these papers were written all the words of their language in their several moods, tenses, and declensions, but without any order. The professor then desired me to observe, for he was going to set his engine at work. The pupils at his command took each of them hold of an iron handle, whereof there were forty fixed round the edges of the frame; and giving them a sudden turn, the whole disposition of words was entirely changed. He then commanded six and thirty of the lads to read the several lines softly as they appeared upon the frame; and where they found three or four words together that might make part of a sentence, they dictated to the four remaining boys who were scribes. This work was repeated three or four times, and at every turn the engine was so contrived, that the words shifted into new places, as the square bits of wood moved upside down.” (Jonathan Swift, Gulliver’s Travels, A Voyage to Balnibarbi) What astonishing forecast did Swift show in that narrative that, in spite of the underlying incredulity and irony, still clarifies our surprise when faced to what might seem to some of us just an abandonment of all that architects and designers have cherished: creativeness and inventiveness. Yet, we could argue that such a radical shift in paradigm occurred once when master builders left the construction ground and took seat at drafting boards. The whole body of design and construction knowledge was split into what now seem to us just specialties undertaken by more and more isolated professionals. That shift entailed new forms of representation and prediction which now each and all architects take for granted. Also, Cartesian space representation turned out to be the main instrument for professional practice, even if one can argue that it is not more than the unfolding of stone carving techniques that master builders and guilds were so fond of. Enter computing and all its unfolding, i.e. DNA coding, fractal geometry, generative computing, nonlinear dynamics, pattern generation and cellular automata, as a whole new chapter in science, and compare that to conical perspective, descriptive and analytical geometry and calculus, and an image begins to form, delineating a separation between architect and digital designer. In previous works, we have tried approaching the issues regarding architects education in a more consensual way. But it seems now that the whole curricular corpus might be changed as well. The very foundations upon which we prepare future professionals shall change, not only in College, but in High School as well. In this paper, we delve further into the disconnect between current curricula and digital design practices and suggest new disciplinary grounds for a new architectural education.
keywords Educational paradigm; Design teaching; Design methods;
series SIGRADI
email
last changed 2016/03/10 10:02

_id ijac20075402
id ijac20075402
authors Burry, Jane R.
year 2007
title Mindful Spaces: Computational Geometry and the Conceptual Spaces in which Designers Operate
source International Journal of Architectural Computing vol. 5 - no. 4, pp. 611-624
summary Combinatorial computational geometry, while dealing with geometric objects as discrete entities, provides the means both to analyse and to construct relationships between these objects and relate them to other non-geometrical entities. This paper explores some ways in which this may be used in design through a review of six, one-semester-long design explorations by undergraduate and postgraduate students in the Flexible Modeling for Design and Prototyping course between 2004 and 2007. The course focuses on using computational geometry firstly to construct topologically defined design models based on graphs of relationships between objects (parametric design,) and concurrently to output physical prototypes from these "flexible models"(an application of numerical computational geometry). It supports students to make early design explorations. Many have built flexible models to explore design iterations for a static spatial outcome. Some have built models of real time responsive dynamic systems. In this educational context, computational geometry has enabled a range of design iterations that would have been challenging to uncover through physical analogue means alone. It has, perhaps more significantly, extended the students' own concept of the space in which they design.
series journal
email
last changed 2008/02/25 20:30

_id sigradi2007_af08
id sigradi2007_af08
authors Erebitis Gallardo, Carlos; Rodrigo Garcia Alvarado
year 2007
title Digital Constructions [Construcciones Digitales]
source SIGraDi 2007 - [Proceedings of the 11th Iberoamerican Congress of Digital Graphics] México D.F. - México 23-25 October 2007, pp. 270-274
summary Nowadays construction of industrial buildings has been intensively automated using numeric-control machines, with lower costs and shorter ranges of production, but these advantages have not been transferred to general architecture. In order to promote architectural alternatives, this paper identified digital modeling techniques targeted to automated constructive systems. The procedures defined are cutting boards, folded volumes, diverse repetition, shipped solids, subtractive mass, volumetric meshes and curved frames, besides a general procedure of development. These techniques demonstrated a closer relationship between design and material execution, and suggest innovative and efficient building possibilities.
keywords Digital Fabrication; Industrial Building; 3D-modeling; Architectural Design
series SIGRADI
email
last changed 2016/03/10 09:51

_id cf2007_031
id cf2007_031
authors Huang, Chih-Chieh Scottie
year 2007
title Conceptual Modeling Environment (COMOEN)
source Computer Aided Architectural Design Futures / 978-1-4020-6527-9 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Futures / 978-1-4020-6527-9] Sydney (Australia) 11–13 July 2007, pp. 31-43
summary Conceptual modeling is an actively creative stage in a design process. Through hand modeling and manipulation of different kinds of modeling tool kits for specific materials, designers are able to generate forms. This article presents a tangible human-computer interface of a C-StressBall for form manipulation and a C-BenchWhirler for visual control. They create a new way of interaction between the virtual world and the physical space. They are aimed to ease the operation in design process by using CAD.
series CAAD Futures
email
last changed 2007/07/06 12:47

_id caadria2007_639
id caadria2007_639
authors Jinuntuya, Pinyo; Jirayod Theppipit
year 2007
title Temporary Housing Design and Planning Software for Disaster Relief Decision Support System
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.k9q
summary There is a continuous and urgent need for disaster relief in Thailand and countries suffering from floods and tsunami impact. Based on this issue, design and planning software for temporary housing project has been developed, as well as the process and guideline for implementation. This paper describes a unique coupling of interactive 3D virtual environment with parametric designing in order to manage disaster relief project more efficiently. Architects and planners can use the functionality of software on both design simulation and project evaluation aspects. We need to provide correct information to help people making decision when they are in disaster. So the disaster relief decision support system must offer proper information of crisis management focused on people, place, and process. One of the main features of software is the relationship modeling of essential factors such as number of people, houses, budget, time, and space. This automatic temporary houses generation and space planning is simulated for land use and layout plan design with cost estimation analysis. The system components were proposed to a new disaster relief system in alternative approach. Using community-based development will not cost budget but required people participation. Our software’s space coordination will start and centered from available space in school or temple with sufficient infrastructure. After essential factors are inputted, appropriated number of temporary houses, public facilities, and management guideline will be generated to support further planning decision. Our core system was developed on Java and Swing Technology, empowered by real-time 3D rendering CAD engine. In addition, “Virtools” as our Authoring Tools was applied to improve design interaction and explore rapid software prototyping. At the end, we discuss the comparison between real situations in Thailand and appropriate design standardization, which should be reconsidered how to manage crisis with the limitation of time and budget from government.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2007_189
id ecaade2007_189
authors Mark, Earl
year 2007
title Simulating Dynamic Forces in Design with Special Effects Tools
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 219-226
doi https://doi.org/10.52842/conf.ecaade.2007.219
summary Special effects technology can facilitate dynamic sketching in the early stage of a design project without needing time-consuming effort. This form of sketching was tested in a design studio taught by the author. The study of dynamic materials and oceanfront site conditions set the stage at the beginning of a design process for a more comprehensive analysis later on. On the one hand, the risk of using special effects tools is that the visual look can seem convincing, but the apparent result is based upon an overly simplified set of assumptions. On the other hand, the use of such technology can be very stimulating to the design imagination without requiring complex analysis that may bog down the free flow of ideas. Once a greater commitment is made to a particular design proposal, more complete physical analysis and modeling can be undertaken to help avoid the risk of false first impressions. In the studio, cloth simulation was used to develop the design of tension membrane structures (tents) that retracted and unfurled in a series of complex movements. Fluid dynamics effects were used in the design and development of related boat dock facilities. A wind-tunnel simulation tool was used to explore the performance of the tension-membrane fabrics under varied wind loads. The visualization techniques were complemented by ¼ to ½ scale assembled components created by rapid prototyping. The use of an actual wind-tunnel further tested the prototypes in some cases. On the whole, quickly implemented special effects were the starting point for reacting to and developing some initial design concepts and served as the basis for more complete physical modeling of prototypes later on. Using animation as a design method is well established in other work (Hirschberg 06). Animation is also a helpful way to work out the step by step assembly of complex architectural form (Mark 95). The special effects tools permit a larger range of initial design alternatives to be initially considered that are subsequently narrowed down by physically based prototypes that are more predictive of real world performance.
keywords Cloth simulation, fluid dynamics effects, design sketching, special effects, tension membrane fabrics
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2007_511
id caadria2007_511
authors Rügemer, Jörg
year 2007
title Various Media in the Design Process and Methodology
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.t8j
summary The paper describes the mergence of traditional architectural design processes with approaches that rely on digital media and software for the creation of architectural space. The depicted projects are part of a ‘work in progress’ process, with a recent studio that is set up to apply the so far accumulated experiences. Within the projects, focus is on those design phases where the applied media and methodology is changed and where the back and forth between different media and the depth of their implementation is perceptible in, and / or has a significant influence on the design itself. Through a line of successive experiments, the paper explains the development of a possible method that utilizes a variety of today’s accessible tools in architecture, making use of phenomena that appear when changing from one tool to another. Goal is to avoid limitations that are existent by the solely employment of one media or method, and to understand the fusion between different media as an inspiring momentum to develop the design further. The paper draws a line from an initially experienced and analyzed design method over several projects in practice and academia to conclude with a possible design method that could be established successfully in both fields of architectural teaching and practice. Initial experiences had been drawn from professional practice, in which the digital realm was limited to a support device of the design process. The first project that is described in the paper, explored the employment of digital media as a possible tool to drive the design process in a broader sense. The studio setting was organized as a laboratory for the exploration of the change of applied media. Focus was on the influence on the design progress. The design method required of the studios participants was not exclusively based on an architectural program, but on an initial, very conceptual process with an artistic approach, based on personal experiences of each participant. This was meant to detach the students entirely from architectural processes and mindsets they had picked up so far. Parallel to that kind of an intellectual process, studio participants learned to handle Maya as the 3D modeling software of their choice. Both the technical knowledge and the artistic projects were merged in a second project phase, in which participants had to further develop their work by applying a very effective mix of various design tools. Using digital media as a parametric design generator, subsequent projects were developed. The task for the designers here were to decide what kind of algorithm could be applied to which process and when it was to be stopped for the best result. Applying such an automatism successfully to the design process, the employment of traditional media and methodology remained, to adapt the digital driven schemes to the required design task. The diverse design experiments demonstrate important aspects when merging complex design and animation software with traditional design processes. To achieve good architectural design results, all examined projects showed that traditional design methods with its physical models are hardly replaceable to its full extent by other media, but digital media are able to strengthen design processes and invite designers to explore new means of design work.
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia07_242
id acadia07_242
authors Sanguinetti, Paola; Abdelmohsen, Sherif
year 2007
title 242 On the Strategic Integration of Sketching And Parametric Modeling in Conceptual Design
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 242-249
doi https://doi.org/10.52842/conf.acadia.2007.242
summary Architects perform problem-solving tasks while designing through various externalization modes. Among the architectural community sketching is associated with conceptual design, and parametric modeling is seen as a tool for detailed design development. However, parametric modeling is increasingly being used for exploring design concepts. We propose that sketching and parametric modeling can be integrated strategically as alternate externalization modes to support problem solving in conceptual design. With sketching, architects are able to externalize their ideas quickly and effortlessly, as the flexible structure of sketching provokes multiple interpretations through continuous refl ection. With parametric modeling, architects must define a set of parameters and rule-based constraints. By modeling design objects as parametric, multiple design variations can be generated, modifi ed, and evaluated. In this paper we describe an efficient process of problem-solving by studying the strategic use of sketching and parametric modeling in conceptual design. We conduct an experiment to explore the processes involved in both modes. Digital sketching is recorded by the Logitech io2 personal digital pen, and parametric modeling using Digital Project software is recorded by screen video capturing software, followed by a retrospective analysis. The ACADIA 2007 competition brief is used as the design task.
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2007_131
id ecaade2007_131
authors Sdegno, Alberto
year 2007
title RQS - Reverse Quadratura for Surveying
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 615-620
doi https://doi.org/10.52842/conf.ecaade.2007.615
summary This research is based on the development of a new method for surveying single and double curved surfaces using an application of an ancient perspective method for representing a picture on a complex surface. The procedure enables the user to have some detailed cross-points of a grid in order to simplify the survey operation. Another phase of the work is to take some double-pictures of the element, according of the method I shall describe in the paper. The photographs of the single element, with the projection of the regular grid, can be processed with every Image-Based Modeling Software in order to obtain – with the usual calibration methods – the digital “mapped with reticulum” model of the curved surface we are analyzing. The final step enables the user to improve the quality of the textured model, switching from the grid-textured photographs to the simple-textured one. This research is part of a more general theoretical and experimental Academic research that has the aim of studying the ancient drawing methods of in order to find some analogies with the digital technology applied to the study of architectural buildings.
keywords Geometric modeling, survey, image-based modeling, image processing, quadraturism
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2007_543
id caadria2007_543
authors Fang, Lixin; Qi zhou
year 2007
title Digital Tectonics in the Shape Finding of Spatial Structures
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.c9f
summary Spatial structures should be designed to acquire appropriate forms so that they can correctly function to the earthquake loading or the wind pressure as well as the dead loading through their load carrying capabilities. The paper probes deeply into the fundamental principle of digital simulation with structures’ mechanic/material tectonics in architecture design and explore its capability for shape-finding in various structure systems through full-size virtual model experiments.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2007_433
id caadria2007_433
authors Dounas, Theodore; Kotsiopoulos M. Anastasios
year 2007
title Generative Systems Based on Animation Tools: Structure and Form of Core Ideas in Architectural Design
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.k1h
summary The goal of the research described in this paper is the formulation of a generative system for architectural design, where a structured core architectural idea is the input and alternatives to that idea are the output. Specifically we present a production pipeline of architectural / spatial configurations using the context of animation and time based design tools. Our model consists of “time” and space design constraints of boundaries / objects affecting a given architectural design, thus producing an alternative solution for every timeframe of the animation cycle. Initially the designer shapes an idea using animation software tools, where each tool is actually a constraint or a grammar rule defined informally by the user/designer. The influence of the tools can vary according to time, speed, location, configuration of the object and/or the constraint itself. In some of these animations the designer has the ability to sidestep partially the issue of emergence by providing specific key - frames for the solution to follow. The use of animation tools [shape driven curves, speed and time-line functions, parent child relationships] in the shape generation of our model empowers the user/designer to configure whole sets of shapes and designs interactively and without the need to define every solution independently. Simultaneously, a different, time-focused view of our model describes its use on designs that develop different configurations over time. Thus a duality of our model is established : the animated schema may be either a sum or a family of various designs or the animated time-line may represent a single design which changes over time. Finally the possibility of a structured graph representing each solution is discussed, where the designer can evaluate the merit of an individual solution in terms of conforming to the initial core idea or where alternative spatial configurations evolve in a different structure from the original design.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2007_014
id ascaad2007_014
authors Dritsas, S. and E. Rafailaki
year 2007
title A Computational Framework for Theater Design
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 165-182
summary This paper presents the results of an ongoing research on computational methods for the design of theatrical spaces. We demonstrate a systemic approach to design supported by a set of digital tools implemented for assisting the process. The primary purpose of the framework is to establish a formal basis for expressing and exploring explicit design criteria. At this stage the framework enables us to metrically access a range of design metrics that traditionally have been addressed through primarily architectural narrative. Moreover, our method strives in establishing a background where knowledge can be explicitly encoded and the results of analytical methods can be additively employed. In the future, the framework will assist as the platform for experimenting with generative or query-based design processes empowered by computation. We structured this paper / framework around three conceptual units: (a) a design intent toolkit assisting the processes of rapidly generating theater configurations; (b) an analytical system that evaluates a range of design metrics centered about aspects of visual comfort; and (c) a post-processing and visualization unit that binds the design metrics with existing data / studies and provide a range of representation methods. Overall, the methodology adopts existing knowledge in theatrical design, challenges traditional ideas of understanding the theater and proposes methods for evaluating its architectural performance. The conclusions focus on highlighting both the limitations and the potential of our system in the process of theater design. We also extend outside the boundaries of the current research into a brief discussion on the methodological impact of digital technology in architectural research. Finally we propose areas of future research and development.
series ASCAAD
email
last changed 2008/01/21 22:00

_id caadria2007_381
id caadria2007_381
authors Fischer, Thomas; Christiane M. Herr
year 2007
title Probing Tool Use in the Practice of Generative Design: A Postgraduate Design Workshop Report
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.r5m
summary This paper investigates whether generative design tools can perform their intended functions after being passed on from the contexts of their production to different application contexts similar to the way that other tools such as hammers or bicycles are. We report on a design studio application of two generative design tools and relate observed design processes and outcomes to our toolmaking intentions. Our findings suggest that, at least in the case of the examined tools and workshop, tool use in generative design tends to defy toolmaking intentions. We discuss the consequences for generative design toolmakers and conclude with some speculations on possible solutions.
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:50

_id c2f9
id c2f9
authors Friedrich E, Derix C and Hannah S
year 2007
title Emergent Form from Structural Optimisation of the Voronoi Polyhedra Structure
source Proceedings of the Generative Arts conference, Milan, 2007
summary In the course of the exploration of computational means in the architectural design process, in order to investigate more complex, adaptive geometries, the Voronoi diagram has recently gained some attention, being a three-dimensional space-filling structure which is modular but not repetitive. The project looks at the Voronoi diagram as a load-bearing structure, and whether it can be useful for structural optimisation. Hereby the edges of the Voronoi polyhedra are regarded as structural members of a statical system, which then is assessed by structural analysis software. Results seem to indicate that the Voronoi approach produces a very specific structural as well as spatial type of order. Through the dislocation of the Voronoi cells, the statical structure becomes more complex through emergent topology changes, and the initially simple spatial system becomes much more complex thorough emerging adjacencies and interconnections between spaces. The characteristics of the emerging form, however, lie rather in the complexity how shifted spaces and parts are fitted together, than in a radical overall emergent geometry. Spatially as well as a structurally, the form moves from a simple modular repetitive system towards a more complex adaptive one, with interconnected parts which cannot stand alone but rather form an organic whole.
keywords complex geometry, emergence, adaptive topology, voronoi diagram
series other
type normal paper
email
more http://www.generativeart.com/
last changed 2012/09/20 18:25

_id ijac20075101
id ijac20075101
authors Hanna, Sean
year 2007
title Automated Representation of Style by Feature Space Archetypes: Distinguishing Spatial Styles from Generative Rules
source International Journal of Architectural Computing vol. 5 - no. 1, pp. 2-23
summary Style is a broad term that could potentially refer to any features of a work, as well as a fluid concept that is subject to change and disagreement, yet approaches to representing it too often seek either a pre-defined set of generative rules or list of measurable features. Instead, a general and flexible method of retrospectively and automatically representing style is proposed based on the idea of an archetype, to which real designs can be compared, and tested with examples of architectural plans. Unlike a fixed, symbolic representation, both the measurements of features that define a style and the selection of those features themselves can be performed by the machine, making it able to generalise a definition automatically from a set of examples. This process is implemented in analysis, and coupled with a generative algorithm to produce plans in a learned style.
series journal
email
last changed 2007/06/14 12:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_474892 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002