CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 554

_id ecaade2007_166
id ecaade2007_166
authors Liapi, Katherine A.
year 2007
title An Integrative Design and Spatial Visualization System for Cable Strut Self-tensioned Structures
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 27-34
doi https://doi.org/10.52842/conf.ecaade.2007.027
summary Novel conceptions of structures consisting of spatial formations of struts and cables present a uniquely defined morphology and structural performance, and offer opportunities for innovative applications in building design. A common feature of these structures is that their spatial geometry is not “a priori” given. This paper is focused on a specific type of cable-strut structure that occurs from the assembly of self tensioned cable-strut modules The spatial configuration of these structures is very complex and necessitated the development of elaborate geometric algorithms that permit the generation of their formal geometry in a virtual 3D environment. To facilitate both the design and the construction of such structures, a spatial visualization system, which integrates a) algorithms for initial form generation, b) geometric parameters that simulate construction stiffening processes, and c) appropriate structural analysis methods, has been developed. The structural organization and parts of this system are presented in this paper. The system renders feasible the exploration of alternate geometries with various levels of pre-stress and displays initial and final configuration of the structure. It also allows for structural analysis data visualization. Examples of projects designed with the assistance of this system are included and discussed.
keywords Cable-strut structures, tensegrity structures, modeling
series eCAADe
email
last changed 2022/06/07 07:59

_id ascaad2007_006
id ascaad2007_006
authors Afify, H.M.N. and Z. A. Abd ElGhaffar
year 2007
title Advanced Digital Manufacturing Techniques (CAM) in Architecture
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 67-80
summary Building projects today are not only born out digitally, but they are also realized digitally through "file-to-factory" processes of computer aided manufacturing (CAM) and computer numerically controlled (CNC) technologies. It was the challenge of constructability that brought into question, what new instruments of practice are needed to take advantage of the opportunities opened up by the digital modes of production, instead of whether a particular form is buildable. In this case of building construction, architects could design with attention to innovative details, afforded by unique shapes and sizes, knowing that whatever they created on their computer screen could be fabricated digitally for an affordable price. The aims of the research are to discuss and analyze the digital manufacturing techniques (CAM) in architecture and its fabrication, production process. To understand how these technologies fit within a broader context of architectural practice. The research begins with defining, what is digital manufacturing in architecture, its potentials, components and influences in the contemporary architecture. Further more it discusses the digital fabrication, Two- dimensional cutting, subtractive fabrication, additive fabrication and formative fabrication. The assembly technique, building skin, new materials and mass- customization in digital manufacturing techniques (CAM). That will be a hand in analyzing several case studies.
keywords Digital technology in architecture, Digital manufacturing, Formative fabrication, New materials, Fabrication machines and software.
series ASCAAD
email
last changed 2008/01/21 22:00

_id ascaad2007_042
id ascaad2007_042
authors Ameireh, O.M.
year 2007
title Abstract Thinking: An Introduction to Creative Thinking in Basic Design
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 527-542
summary This paper critically examines the nature of the dramatic increase in the number of students accepted in schools of architecture in Jordan, and the contradictory decrease in their artistic, creative, thought process, projects problem solving and other skills. The paper also reviews architectural curriculum and courses to identify weaknesses in handling the changes and ultimately within these constraints and in order to handle the students variable potentials, abilities and contradictions, certain exercises in the basic design course are devised in ways that; reduces its dependency on learnable manual skills and conceptual thinking; uses teaching techniques that correlates and incorporates Arts, Architecture and Sciences as complementary topics; approaches and reaches creativity as a procedure not a gift; transfers and travels easily between complexities and simplicities, between natural and artificial intelligence, between abstract and relative thinking; employ geometries and design tools as the main structure of any composition; makes self evaluations of choices, decisions and variables easier. Taking Abstraction as a framework in solving the problem of the exercises gave answers and solution to many problems that was not easy solving under the conventional ways of design.
series ASCAAD
email
last changed 2008/01/21 22:00

_id ecaade2007_054
id ecaade2007_054
authors Angulo, Antonieta
year 2007
title A Technology-Enhanced Metacognitive Strategy
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 465-471
doi https://doi.org/10.52842/conf.ecaade.2007.465
summary This paper describes the implementation of a technology-enhanced metacognitive strategy that seeks to improve the learning outcomes in beginners design studios. The implementation was based on the use of time-based rich-media tools that allowed the students to document and present the different stages of their design process. The results of the design assignment in the experimental group were compared with the results of the same assignment implemented without such a metacognitive strategy and this comparison has provided evidence about the potential benefits of the tested methods.
keywords Design education, design process, time-based media, metacognitive strategy, self-regulated learning
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia07_025
id acadia07_025
authors Ascott, Roy
year 2007
title Architecture and the Culture of Contingency
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 25-31
doi https://doi.org/10.52842/conf.acadia.2007.025
summary A culture is a set of behaviours, attitudes and values that are shared, sustained and transformed by an identifi able community. Currently, we are bound up in a culture of consumerism, and of terror; there are also retro cultures and utopian cultures. What’s happening now that’s interesting is that many, if not all of these diff erent tendencies, tastes and persuasions are being re-aligned, interconnected and hybridised by a vast global community of online users, who are transdisciplinary in their approach to knowledge and experience, instinctively interactive with systems and situations, playful, transgressive and enormously curious. This living culture makes it up as it goes along. No longer do the institu- tions of state, church or science call the tune. Nor can any architectural schema contain it. This is a culture of inclusion and of self-creation. Culture no longer defi nes us with its rules of aesthetics, style, etiquette, normalcy or privilege. We defi ne it; we of the global community that maps out the world not with territorial boundaries, or built environments, but with open-ended networks. This is a bottom-up culture—non-linear, bifurcating, immersive, and profoundly human. Who needs archi- tecture? Any structural interface will do. Ours can be described as a contingent culture. It’s about chance and change, in the world, in the environment, in oneself. It’s a contingent world we live in, unpredictable, unreliable, uncertain and indeterministic. Culture fi ghts back, fi ghts like with like. The Contingent Culture takes on the contingency of life with its own strategies of risk, chance, and play. It is essentially syncretic. People re-invent themselves, create new relationships, new orders of time and space. Along the way, they create, as well as accommodate, the future. This culture is completely open-ended, evolving and transforming at a fast rate—just as we are, at this stage of our evolution, and just as we want it to be. Human nature, unconstrained, is essentially syncretic too.
series ACADIA
last changed 2022/06/07 07:54

_id ascaad2007_016
id ascaad2007_016
authors Biloria, N.
year 2007
title Developing an Interactive Architectural Meta-System for Contemporary Corporate Environments: An investigation into aspects of creating responsive spatial systems for corporate offices incorporating rule based computation techniques
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 199-212
summary The research paper exemplifies upon an attempt to create a co-evolving (socio-cultural and technological) programmable spatiality with a strong underpinning in the domain of computation, interaction design and open system typologies for the generation of a constantly informed self-adaptive corporate office space (which addresses the behavioral patterns/preferences of its occupants). Architectural substantiations for such corporate bodies embodying dynamic business eco-systems usually tend to be rather inert in essence and deem to remain closed systemic entities, adhering to a rather static spatial program in accordance with which they were initially conceptualized. The research initiative, rather than creating conventional inert structural shells (hard components), thus focuses upon the development of a meta-system, or in other words the creation of a ‘soft’ computationally enriched open systemic framework (informational) which interfaces with the ‘hard’, material component and the users of the architectural construct (corporate offices). This soft space/meta system serves as a platform for providing the users with a democratic framework, within which they can manifest their own programmatic (activity oriented) combinations in order to create self designed spatial alternatives. The otherwise static/inert hard architectural counterpart, enhanced with contemporary technology thus becomes a physical interface prone to real-time spatial/structural and ambient augmentation to optimally serve its users.
series ASCAAD
email
last changed 2008/01/21 22:00

_id ecaade2007_038
id ecaade2007_038
authors Campbell, Cameron
year 2007
title The Kino-eye in Digital Pedagogy
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 543-550
doi https://doi.org/10.52842/conf.ecaade.2007.543
summary “I am the kino-eye” states Dziga Vertov in his classic movie The Man with the Movie Camera (1929). The relationship of the cameraman, the subject, and audience is a dynamic that he investigates through cinema. It is also a dynamic that inspires an innovative way for advanced digital media to be explored in architecture pedagogy. This paper is focused on three ways to translate the cinematic relationship developed in Dziga’s work to digital media in architecture: the way designers capture and manipulate digital media to make architecture; how the discourse of film and architecture can be informed by an understanding of the manipulation of digital media; and the role of digital media production as a form of research for architecture. The film is noteworthy because it is not a typical narrative screenplay, rather it is a visual experiment. In standard films the perceptions of space are manipulated through the camera and through other means, but the audience is rarely aware of it. However, Vertov is acutely aware of this dynamic and engages the audience by self-consciously using what would otherwise be considered a mistake – the viewer is aware that the camera looks at his/her own relationship with film not just the relationship of camera and scene. The translation of this into the classroom is that the same tools allow designers to be critical of their relationship with the medium and the way media is used to make architecture. This concept can be applied to any medium, but in this class it is applied to how students relate with produced motion images and editing that into a video production. The three elements described in this text are key aspects of not simply producing short films, but an opportunity to actually be introspective of architecture through an alternative media. Student projects include video montages that develop a cultural perspective on design and projects that are self-conscious of technology and how it impacts the production. The film-work necessary to achieve these productions is simultaneously conscious of the way in which the author relates to the scene and conscious of how that scene is edited in the context of the production.
keywords Pedagogy, video, hyperspace, film
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia07_164
id acadia07_164
authors Diniz, Nancy; Turner, Alasdair
year 2007
title Towards a Living Architecture
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 164-173
doi https://doi.org/10.52842/conf.acadia.2007.164
summary Interaction is the latest currency in architecture, as responsive components are now reacting to the inhabitant of the space. These components are designed and installed by the architect with a view to the phenomenology of space, where the experience of the environment is previewed and pre-constructed before it is translated into the conception of the space. However, this traditional approach to new technology leaves no scope for the architecture to be alive in and of itself, and thus the installed piece quickly becomes just that—an installation: isolated and uncontained by its environment. In this paper, we argue that a way to approach a responsive architecture is to design for a piece that is truly living, and in order to propose a living architecture first we need to understand what the architecture of a living system is. This paper suggests a conceptual framework based on the theory of Autopoiesis in order to create a “self-producing” system through an experiment entitled, “The Life of a Wall” (Maturana and Varela 1980). The wall has a responsive membrane controlled by a genetic algorithm that reconfigures its behaviour and learns to adapt itself continually to the evolutionary properties of the environment, thus becoming a situated, living piece.
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2007_136
id ecaade2007_136
authors Dohmen, Philipp; Rüdenauer, Kai
year 2007
title Digital Chains in Modern Architecture
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 801-804
doi https://doi.org/10.52842/conf.ecaade.2007.801
summary The “digital chain” is a continuous digital organization process, from the draft right into the manufacturing. Now one of these chains is applied on a mountain shelter. The individual steps are programmed and connected by universal interfaces. The computer is used not as passive digital drawing board, but as self-dependent tool that exerts influence on. Rules, dependence and aims, are formulated by the architect the computer can optimize due to its computing power. The role of the architect shifts thereby from the form designer to the role of a process designer. The aesthetics of the results is exciting and unusually, organically and self-evident - it is however always the result of given parameters. One topic is the complexity. The constructional modeling of the computers is a substantial support and easement. With programming techniques and parameterized construction, a high degree of individualizing becomes possible. A further point is efficiency. Construction with individual units, which former on was just realizable with high time and cost, become economically in this manner today. Furthermore computer-controlled machines work with precision and a detailing, which would be by workmanship neither temporally nor technically obtainable.
keywords Digital chain, mass customization, one of a kind production
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id ijac20075401
id ijac20075401
authors Koutamanis, Alexander
year 2007
title Fuzzy Modelling for Early Architectural Design
source International Journal of Architectural Computing vol. 5 - no. 4, pp. 589-610
summary Fuzzy modelling is simultaneously an extension of existing modelling approaches and a negation of one of their main aspects, the crispness of their definition. As a digital equivalent of analogue sketching it allows designers to register and manipulate imprecise and uncertain information. In the framework of design representations fuzzy modelling supports the development of conceptual design models characterized by flexible definition and interaction. The main advantages of such models are fluency, abstraction and continuity, at a level similar to that of analogue techniques. In addition to that they offer the possibility of local autonomy, i.e. segmentation of a representation into self-regulating and cooperating components. Three alternative forms of fuzzy modelling are proposed: (1) Canonical objects with tolerances, (2) objects described by minimal and maximal values, and (3) point sets comprising discrete, autonomous particles that describe the object by their spatial or structural relationships.
series journal
email
last changed 2008/02/25 20:30

_id ecaade2020_184
id ecaade2020_184
authors Kycia, Agata and Guiducci, Lorenzo
year 2020
title Self-shaping Textiles - A material platform for digitally designed, material-informed surface elements
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 21-30
doi https://doi.org/10.52842/conf.ecaade.2020.2.021
summary Despite the cutting edge developments in science and technology, architecture to a large extent still tends to favor form over matter by forcing materials into predefined, often superficial geometries, with functional aspects relegated to materials or energy demanding mechanized systems. Biomaterials research has instead shown a variety of physical architectures in which form and matter are intimately related (Fratzl, Weinkamer, 2007). We take inspiration from the morphogenetic processes taking place in plants' leaves (Sharon et al., 2007), where intricate three-dimensional surfaces originate from in-plane growth distributions, and propose the use of 3D printing on pre-stretched textiles (Tibbits, 2017) as an alternative, material-based, form-finding technique. We 3D print open fiber bundles, analyze the resulting wrinkling phenomenon and use it as a design strategy for creating three-dimensional textile surfaces. As additive manufacturing becomes more and more affordable, materials more intelligent and robust, the proposed form-finding technique has a lot of potential for designing efficient textile structures with optimized structural performance and minimal usage of material.
keywords self-shaping textiles; material form-finding; wrinkling; surface instabilities; bio-inspired design; leaf morphogenesis
series eCAADe
email
last changed 2022/06/07 07:52

_id d481
id d481
authors Langley P, Derix C and Coates P
year 2007
title Meta-Cognitive Mappings: Growing Neural Networks for Generative Urbanism
source Generative Arts conference, Milan, 2007
summary This paper examines the use of dynamic learning systems and adaptive topologies within neural networks models, and their implications as a tool for architectural mappings. The principal investigation is the ability of such systems to identify/ map/ model/ represent flows within dynamic data sets and identify topological relationships between these flows. A growing neural network [GNN] model is proposed, able to map dynamic data inputs over time. It is based on Kohonen’s early self-organising feature maps [SOM] and takes as its starting point previous work by CECA with neural networks in an architectural context, as well as other examples of neural gases, and GNNs, in order to develop a model capable of ‘autopoietic’ behaviour and ‘meta – learning’. The principal investigation is the ability of such a system to identify/ map/ model/ represent flows within dynamic data sets and identify topological relationships between these flows.

As a case study, the proposed neural network model has been used to map ‘urban territory’, as part of an on going architectural research project, based in North London. The project takes the notion of ‘urban territories’ rather than ‘urban space’ as the field for interrogation, as a description of temporal spatial occupation space, rather than spatial physical permanence. Furthermore, the GNN may be used to identify the relationships between unused and vacant sites along the street. In this way, the GNN may become a means of proposing architectural interventions for these spaces, so that the territories of those that occupy it and the negotiations between them are not lost.

keywords neural networks, adaptive topology, urban planning, generative design
series other
type normal paper
email
more http://www.generativeart.com/
last changed 2012/09/24 19:38

_id caadria2007_191
id caadria2007_191
authors Li, Biao
year 2007
title A Generic House Design System: Expertise of Architectural Plan Generating
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.u6h
summary This paper presents the process and decision of producing software named “Gen_house” that generates high quality sketches of architectural design tasks. The result of a successful project combining research, development and education in both Europe and Asia is achieved in order to ease the practice demand of considering multiple aspects within a design process. The software employs principles and methods of self- organization, agent based solutions and natural sciences, which brings them to the field of architectural design.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2007_189
id ecaade2007_189
authors Mark, Earl
year 2007
title Simulating Dynamic Forces in Design with Special Effects Tools
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 219-226
doi https://doi.org/10.52842/conf.ecaade.2007.219
summary Special effects technology can facilitate dynamic sketching in the early stage of a design project without needing time-consuming effort. This form of sketching was tested in a design studio taught by the author. The study of dynamic materials and oceanfront site conditions set the stage at the beginning of a design process for a more comprehensive analysis later on. On the one hand, the risk of using special effects tools is that the visual look can seem convincing, but the apparent result is based upon an overly simplified set of assumptions. On the other hand, the use of such technology can be very stimulating to the design imagination without requiring complex analysis that may bog down the free flow of ideas. Once a greater commitment is made to a particular design proposal, more complete physical analysis and modeling can be undertaken to help avoid the risk of false first impressions. In the studio, cloth simulation was used to develop the design of tension membrane structures (tents) that retracted and unfurled in a series of complex movements. Fluid dynamics effects were used in the design and development of related boat dock facilities. A wind-tunnel simulation tool was used to explore the performance of the tension-membrane fabrics under varied wind loads. The visualization techniques were complemented by ¼ to ½ scale assembled components created by rapid prototyping. The use of an actual wind-tunnel further tested the prototypes in some cases. On the whole, quickly implemented special effects were the starting point for reacting to and developing some initial design concepts and served as the basis for more complete physical modeling of prototypes later on. Using animation as a design method is well established in other work (Hirschberg 06). Animation is also a helpful way to work out the step by step assembly of complex architectural form (Mark 95). The special effects tools permit a larger range of initial design alternatives to be initially considered that are subsequently narrowed down by physically based prototypes that are more predictive of real world performance.
keywords Cloth simulation, fluid dynamics effects, design sketching, special effects, tension membrane fabrics
series eCAADe
email
last changed 2022/06/07 07:59

_id ascaad2007_057
id ascaad2007_057
authors Menges, A.
year 2007
title Computational Morphogenesis: Integral Form Generation and Materialization Processes
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 725-744
summary Natural morphogenesis, the process of evolutionary development and growth, derives polymorphic systems that obtain their complex form, organisation and versatility from the interaction of system intrinsic material capacities and external environmental influences and forces. One striking aspect of natural morphogenesis is that formation and materialisation processes are always inherently and inseparably related. In stark contrast to these integral development processes of material form, architecture as a material practice is mainly based on design approaches that are characterised by a hierarchical relationship that prioritises the definition and generation of form over its subsequent materialisation. This paper will present an alternative approach to design that entails unfolding morphological complexity and performative capacity without differentiating between form generation and materialisation processes. Based on an understanding of material systems not as derivatives of standardized building systems and elements but rather as generative drivers in the design process this approach seeks to develop and employ computational techniques and digital fabrication technologies to unfold innate material capacity and specific latent gestalt. Extending the concept of material systems by embedding their material characteristics, geometric behaviour, manufacturing constraints and assembly logics within integral computational models promotes an understanding of form, material and structure not as separate elements, but rather as complex interrelations in polymorphic systems resulting from the response to varied input and environmental influences and derived through the logics and constraints of advanced manufacturing processes. These processes will be explained along 8 research projects.
series ASCAAD
email
last changed 2008/01/21 22:00

_id sigradi2007_af27
id sigradi2007_af27
authors Muñoz Henríquez, Leda María
year 2007
title Towards a Graphic Design teaching methodology, based on a system of perceptual tools for digital visual codification [Hacia una metodología de enseñanza del Diseño Gráfico, basada en un sistema de herramientas perceptuales de codificación visual digital]
source SIGraDi 2007 - [Proceedings of the 11th Iberoamerican Congress of Digital Graphics] México D.F. - México 23-25 October 2007, pp. 121-126
summary New requirements from the "Visual Information Society" motivate the creation of strategies for the teaching of digital design as a professional skill. Here we describe a computer-mediated experience with a learning method addressing a strategy of digital visual codification in initial workshops of Graphic Design. The strategy is based on a “system of perceptual tools for digital visual codification”, categorized into semiotic foundations, which allow the student to address visual communication through digital design with normalized criteria and creative openness. This enables the student to develop competence in visual digital communication and self-assessment of both process and result.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ijac20075302
id ijac20075302
authors Neumann, Oliver; Schmidt, Daniel
year 2007
title Innovative CNC Timber Framing - Technology and Cultural Expression
source International Journal of Architectural Computing vol. 5 - no. 3, pp. 469-486
summary he design-build project for the outdoor theater roof structure at the UBC Malcolm Knapp Research Forest at Maple Ridge, British Columbia, explores technical, spatial, and cultural aspects of CNC wood fabrication. References for the project are technological innovation and formal expression of contemporary wood structures. The roof project illustrates how spatial concepts are informed by the logic of fabrication and methods of assembly. A reciprocal relationship between technology, space, and locale suggests that the introduction of new technology coincides with new spatial concepts. Innovative design in this project is defined as work that resonates at the intersection of the fields of technology, material science, manufacturing processes, and techniques of assembly that constitute the expanded context that projects need to engage. It is through collaborative design research on CNC wood fabrication technologies that common design and building practice is put into question, and boundaries are explored and expanded.
series journal
last changed 2007/11/20 18:06

_id acadia07_158
id acadia07_158
authors Oatman, Devin; Senagala, Mahesh
year 2007
title Am I? Architecture of Ambient Intelligence
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 158-163
doi https://doi.org/10.52842/conf.acadia.2007.158
summary In its purest state, Ambient Intelligence is smart computing whose presence is not apparent to the human senses except in response and actions. The original intentions and origins of Ambient Intelligence began with the need for more efficient and unobtrusive management of our everyday activities. Synonymous with ubiquitous computing, Ambient Intelligence, or AmI, consists of: UbiComp: the integration of microchips and computers into everyday objects; UbiComm: the ability of these objects to communicate with each other and the user; and Intelligent User Interface which allows inhabitants of the environment to interact with the system with human gestures (Riva 2005). Put together, these components are basically personifi ed computers. The key factor in Ambient Intelligent communities is that the microscopic computers are aware of their surroundings and their purpose just as human beings are. With the ability to self-program and react to new software, they eliminate the need for humans to program them, decreasing maintenance and programming time. These concepts and technologies raise important questions. What happens when the system disappears? Are we ready as a society to see a certain degree of power taken away from us by anticipatory computers? This short paper will provide an overview of AmI and why it is important for architects to embrace, explore, and engage this emerging technology.
series ACADIA
email
last changed 2022/06/07 08:00

_id ascaad2007_029
id ascaad2007_029
authors Prichard-Schmitzberger, A.
year 2007
title Team-Working and Reverse Engineering: Teaching Methods for Complex Architecture
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 343-356
summary This paper contains research and details of a work in progress on the implementation of advanced 3D precision modelling in an undergraduate curriculum. Core to the investigation is the undergraduate course Digitally Enhanced Construction and Fabrication (D.E.C.A.F.) at the Department of Architecture, California State Polytechnic University Pomona. The course tests the application of Reverse Engineering (RE) in a team configuration, Hot-Swapping (HS), and precision modelling of complex geometries with minimal programming/scripting input, taking in consideration the limited resources common to small-scale architectural practices. Reverse Engineering particularly enables students to extract information building assembly and executed details with precision, based on existing documentation. It is conducted in teams not only to emphasize and investigate efficiency of protocols but also to observe problems in developing threads in digital modelling. Hot-Swapping identifies the principle of replacing components of a building during active design processes without altering its general appearance. As a teaching methodology, it allows the investigation of required modelling accuracy, creation of prototypes and various versions of assembly alternatives. The current paper focuses mainly on 1) engaged procedures in Reverse Engineering, 2) the educational aspects of such an approach, and 3) the advantages and disadvantages of conventional tools in a collaborative modelling exercise.
series ASCAAD
email
last changed 2008/01/21 22:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_838214 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002