CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id caadria2012_046
id caadria2012_046
authors Lertsithichai, Surapong
year 2012
title Building Thailand's tallest Ganesh: CAD/CAM integration in conventional metal fabrication
doi https://doi.org/10.52842/conf.caadria.2012.337
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 337–346
summary Ganesh (Ganesa or Ganesha) is a Hindi god well known for his distinguishable elephant head and widely revered as the god of success or remover of obstacles. Patrons in Thailand have worshipped Ganesh and respected him by means of erecting statues of Ganesh in various poses and sizes throughout the country. In late 2008, the people of Chacheongsao, a province located East of Bangkok, decided to create Thailand’s tallest standing Ganesh statue made with bronze reaching heights up to 39 meters and situated on the Bangpakong river bank overseeing the city and its people. The author and design team was approached by representatives from Chacheongsao and commissioned to advise the process from conception to construction. The challenge started with seeking appropriate computer-aided design and manufacturing technologies and innovative processes to guide the design team throughout the production. The 0.60-meter bronze cast sculpture of the Ganesh was scanned using a 3D optical scanner to generate a solid model of the statue. A surface model was then extracted from the 3D model to firstly determine the most efficient structural support within the statue and secondly to generate surface strips for the foundry to create actual bronze casts. The construction of the project began early 2009 and the statue has since been erected from its base to currently its head. During construction, the author and design team has encountered several problems translating pixels to parts. Several errors have occurred during the mould and cast production process as well as construction errors on site causing mismatches of the structure and surface, misalignments, and protruding structural supports and joints. The lessons learned from this project is documented and analysed with hopes to create a more effective process for future projects with similar requirements.
keywords CAD/CAM; 3D scanner; CNC milling; metal fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id acadia11_242
id acadia11_242
authors Braumann, Johannes; Brell-Cokcan, Sigrid
year 2011
title Parametric Robot Control: Integrated CAD/CAM for Architectural Design
doi https://doi.org/10.52842/conf.acadia.2011.242
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 242-251
summary Robots are gaining popularity in architecture. Snøhetta has recently purchased their own industrial robot, becoming one of the first architectural offices to adopt robot technology. As more and more architects are exposed to robotic fabrication, the need for easy interoperability, integration into architectural design tools and general accessibility will increase. Architects are discovering that industrial robots are much more than kinematic machines for stacking bricks, welding or milling - they are highly multifunctional and can be used for a huge variety of tasks. However, industry standard software does not provide easy solutions for allowing direct robot control right from CAAD (Computer Aided Architectural Design) systems. In this paper we will discuss existing methods of programming industrial robots, published architectural results (Gramazio and Kohler 2008) and the design of a new user interface that allows intuitive control of parametric designs and customized robotic mass production, by integrating CAM (Computer Aided Manufacturing) functions into CAAD.
keywords robot programming; parametric design; mass customization; grasshopper component design; fabrication; robot milling; digital architecture
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac20076306
id ijac20076306
authors Dujovne, David Butelmann; Montoya, Claudio Labarca
year 2008
title Digital design and manufacture based on Chiloean boats
source International Journal of Architectural Computing vol. 6 - no. 3, pp. 317-333
summary This paper proposes a design methodology for the manufacture of complex, double-curved surfaces based on the digital reconstruction of traditional structural and constructive elements of Chiloean boats. It also suggests a beneficial association between digital design and CAD CAM for manufacture using locally crafted construction techniques. The incorporation of innovated contemporary digital design and fabrication tools into traditional construction systems, aims to optimize and perpetuate traditional artisanal craft construction of complex shapes developed in the south of Chile. The importance of this research in budget-restricted economies, lies in the possibility of applying local construction and assembly techniques to new sophisticated designs that may satisfy the country's architectural needs. Scale models are used to record the design process and constructive development while information flow charts document the design methodology for the construction of complex geometries.
series journal
last changed 2008/10/14 14:00

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2008_010
id ecaade2008_010
authors R. Lyon , Eduardo
year 2008
title CAD and CAM Systems Integration:
doi https://doi.org/10.52842/conf.ecaade.2008.837
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 837-844
summary CAM systems traduce design information from CAD systems in to different manufacturing routines in order to produce NC code for CNC machinery. The output from the CAM software is usually a simple text file of G and M code, usually containing thousand of lines of code. Later this code is transferred to a machine tool using a direct numerical control (DNC) program. This translation process becomes extremely important in developing a digital design and fabrication approach. Consequently the aim in this research is; to investigate CAD-CAM workflow; to analyze final product deviation from design intent; and to determine where in the workflow, and how design strategies and design decisions correlates to manufacturing results.
keywords Design Computing, CAD and CAM integration, Digital fabrication
series eCAADe
email
last changed 2022/06/07 08:00

_id bbc9
id bbc9
authors Aeck, Richard
year 2008
title Turnstijl Houses & Cannoli Framing
source VDM Verlag Dr. Muller Aktiengesellschaft Co. KG, Germany

ISBN: 3639078470 ISBN-13: 9783639078473

summary This work presumes that integrating modeling tools and digital fabrication technology into architectural practice will transform how we build the detached house. Single-family houses come in all shapes and sizes, and in doing so, imply variation as well in certain materials, methods, and lighter classes of structure. Ultimately, houses are extensions, if not expressions, of those dwelling within, yet our attempts to produce appealing manufactured houses have prioritized standardization over variation and fall short of this ideal. Rather than considering new offerings born of the flexibility and precision afforded by digital production, sadly, today’s homebuilders are busy using our advancing fabrication technology to hasten the production of yesterday’s home. In response to such observations, and drawing upon meta-themes (i.e., blending and transition) present in contemporary design, this study proposes a hybrid SIP/Lam framing system and a corresponding family of houses. The development of the Cannoli Framing System (CFS) through 3D and physical models culminates in the machining and testing of full-scale prototypes. Three demonstrations, branded the Turnstijl Houses, are generated via a phased process where their schema, structure, and system geometry are personalized at their conception. This work pursues the variation of type and explores the connection between type and production methodology. Additional questions are also raised and addressed, such as how is a categorical notion like type defined, affected, and even “bred”?
keywords Digital Manufacturing, Type, Typology, CNC, SIP, SIPs, Foam, PreFab, Prefabrication, Framing, Manufactured House, Modular, Packaged House, Digital, Plywood, Methodology
series thesis:MSc
type normal paper
email
more http://branchoff.net
last changed 2010/11/16 08:29

_id acadia08_082
id acadia08_082
authors Del Campo, Matias; Sandra Manninger
year 2008
title Speculations on Tissue Engineering and Architecture
doi https://doi.org/10.52842/conf.acadia.2008.082
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 82-87
summary The main aim of this paper is to speculate on opportunities inherent in the field of tissue engineering, for possible applications in the discipline of architecture. Engineered solutions based on the discoveries within the discipline of Tissue engineering can yield novel building materials and construction methods. These entire conjectures mean a different approach to the trajectories of architectural production, abandoning mechanical solutions for architecture problems in favor of biological, organ driven architectonic conditions.
keywords Algorithm; Construction; Digital Fabrication; Material; Topology
series ACADIA
last changed 2022/06/07 07:55

_id ac21
id ac21
authors Giddings B, Horne M
year 2008
title The Changing Patterns of Architectural Design Education
source Architecture and Modern Information Technologies, Vol. 3, No. 4. ISSN-1998-4839
summary Digital technologies have been introduced to students of architecture for over two decades and at present it could be argued that students are producing some of the highest quality designs, and some of the most interesting forms ever to come from University Schools. The value of computer aided design (CAD) is also being demonstrated in architectural practice, with high profile, large budget, bespoke and iconic buildings designed by internationally renowned architects. This paper reviews the changing patterns of architectural design education and considers the contribution digital technologies could make to buildings with more commonplace uses. The study offers a perspective on different kinds of buildings and considers the influence that emerging technologies are having on building form. It outlines digital technologies, alongside students’ application for architectural design and considers the role they could play in the future, in developing a shared architectural language. It is suggested that some of the biggest opportunities for future research will be in the design of external spaces, often a neglected part of architectural design education.
keywords architectural design education, digital technologies
series other
type normal paper
email
more http://www.marhi.ru/AMIT
last changed 2008/11/02 20:38

_id cdc2008_007
id cdc2008_007
authors Giddings, Bob and Margaret Horne
year 2008
title The Changing Patterns of Architectural Design Education in the UK
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 7-16
summary Digital technologies have been introduced to students of architecture for over two decades and at present it could be argued that students are producing some of the highest quality designs, and some of the most interesting forms ever to come from University Schools. The value of computer aided design (CAD) is also being demonstrated in architectural practice, with high profile, large budget, bespoke and iconic buildings designed by internationally renowned architects. This paper reviews the changing patterns of architectural design education and considers the contribution digital technologies could make to buildings with more commonplace uses. The study offers a perspective on different kinds of buildings and considers the influence that emerging technologies are having on building form. It outlines digital technologies, alongside students’ application for architectural design and considers the role they could play in the future, in developing a shared architectural language. It is suggested that some of the biggest opportunities for future research will be in the design of external spaces, often a neglected part of architectural design education.
email
last changed 2009/01/07 08:05

_id caadria2008_7_session1b_061
id caadria2008_7_session1b_061
authors Kenzari, Bechir
year 2008
title Digital Design and Fabrication
doi https://doi.org/10.52842/conf.caadria.2008.061
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 61-67
summary The universe of digital fabrication does not only allow buildings to be produced as quick, precise, multiply-generated objects (prototypes) but also reduces, in a very specific way, their presence as original entities. This implies a radical disjunction between the past and the future of the building industry, with all the intrinsic changes and transformations that might affect both the architectural product and the maker. Drawing mainly on Walter Benjamin’s work on technical reproducibility and information, but also on Barthes’ theory of fashion, the present paper will try to analyze the theoretical and practical implications of these transformations.
keywords Design, fabrication, prototypes, flexibility, Benjamin
series CAADRIA
email
last changed 2022/06/07 07:52

_id ef93
id ef93
authors Krawczyk, Robert J
year 2008
title The Codewriting Workbook: Creating Computational Architecture in AutoLISP
source Princeton Architectural Press, New York
summary Conceived as a primer for architects, artists and designers, The Codewriting Workbook introduces students and practitioners to basic programming concepts for computeraided design (CAD). Through a series of guided exercises using algorithmic functions, readers learn how to develop and write procedures for two-dimensional drawings and three-dimensional models. Each sequence of exercises starts with a simple concept and evolves into a family of possible solutions, including specifying and exploring a wide range of design alternatives, integrating parameters for controlling randomness, utilizing meteorological data, and developing complex patterns for laser-cutting and CNC-milling. Exercises are presented in AutoLISP, a widely accessible CAD programming environment.

Forward by William J. Mitchell

CD included, over 400 functions, 416 pages, 274 drawings

keywords programming, algorithmic design, computational architecture, AutoLISP
series book
type normal paper
email
more http://home.netcom.com/~codewriting/
last changed 2008/12/08 22:08

_id sigradi2008_078
id sigradi2008_078
authors Lobos, Danny; Dirk Donath
year 2008
title Top down and bottom up – using BIM to merge these two design strategies.
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Our current research is focused on the optimization and evaluation of the architectural building design (gestalt), related and in balance to the inner organization of a building, the floorplan layout. This paper is focused on the impact of Space Layout Planning supported by Information and Communication Technologies (ICT) applied to Architectural Design. We present an overview and wide description of the „architectural design“, the classical definition and methods; and its evolution in practice since the ICT tools impact of the last forty years. Definition such as space program, space relationships, space function are wide discussed to understand the phenomena of architectural layout design, the parameters, variables, constraints and goals of each design. Second we present the state of the art and the current techniques and approaches (optimization, generative systems, artificial intelligence, genetic algorithms, physically based modeling, etc), a classification structure is generated to visualize the areas of impact and use of each technique (different areas from architectural design). Finally we described a complete framework to research and develop our own methodologies based on a specific case of architectural design, the current CAD tools and the possible develop of new tools using the impact of BIM systems.
keywords space layout planning, computer aided design, functional planning, architectural floor layout, design methodologies, simulation and evaluation
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2008_068
id ecaade2008_068
authors Mark, Earl
year 2008
title Animated Parametric Rapid Prototyping
doi https://doi.org/10.52842/conf.ecaade.2008.897
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 897-904
summary This paper reports on the use of animation to enhance the observable range of choices in parametric rapid prototyping. Animation extends parametric rapid prototyping in three ways. First, it is used to reveal dynamically a set of possible forms from which to pick out one that may best serve a particular design project. That is, by animating the parameters that drive the geometrical model, we can visualize the continuum of alternatives that lie between specific key-framed settings of an architectural form. Second, animation can be used to pre-visualize a series of geometrical constructions for transforming a relatively raw three-dimensional form into one that satisfies the demands of a completed architectural project. Third, animation can be used to pre-visualize transformations of a given structure based on parameters set to adapt to varied conditions. In each case study, physical models were assembled through CNC fabrication.
keywords animation, scripting, parametric, rapid prototyping, design studio
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
doi https://doi.org/10.52842/conf.acadia.2016.140
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2008_10_session1b_081
id caadria2008_10_session1b_081
authors Penttilä, Hannu; Markus Peter, Dietrich Elger
year 2008
title Evaluating VBE AND BIM-frameworkS A Cost Estimation Case Study and Reflections to Environmental Issues
doi https://doi.org/10.52842/conf.caadria.2008.081
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 81-88
summary This paper describes and evaluates two recently emerged concepts, Virtual Building Environment VBE and Building Information Modelling BIM, fitting them into the context of contemporary design and construction. Both are elementary concepts in modern digitally “reinforced” design and construction. A case study of cost estimation is presented to illustrate how discipline related issues are currently managed within VBE and BIM. An environmental aspect is presented as a corresponding domain to evaluate the other use cases of building related information. Other similar domains to be evaluated perhaps in further case studies could be the functional user aspect, the project management aspect and the regulating aspect by the society and authorities. A hypothetical assumption is, that methods and technologies which are currently used within VBE and BIM, mainly by designers, can well support various data extractions from BIM-models, but they may not serve all construction process participants in the most beneficial way. Also wider scale building portfolios are requested as conceptual extensions to VBE and BIM. This study is based on ongoing PhD studies on building information modelling and environmental life cycle assessment.
keywords VBE; virtual building environment; BIM; building information model; CAD; cost estimation; life cycle assessment; LCA
series CAADRIA
email
last changed 2022/06/07 08:00

_id radzjukevich02_paper_eaea2007
id radzjukevich02_paper_eaea2007
authors Radzjukewich, Andrey
year 2008
title The Computer Methods of Construction Spiral Structures
source Proceedings of the 8th European Architectural Endoscopy Association Conference
summary The object of our research is geometric characteristics of spiral structures which are widely spread in nature (cones, sunflower beds…). It is a well-known fact that there is a proportional intercommunication according to the “golden section”. The correlation of the quantity of “right” and “left” spirals ties to have an irrational coefficient of “golden section” through the correlation numbers of 1,618… from Fibbonacci series ( 5/3, 8/5, 13/8, 21/13, 34/21, 55/34 …). When the proportion of “golden section” was found in the natural objects since the middle of the 19-th century (A.Zeizing), there began to appear a lot of hypotheses about some special aesthetic and technological characteristics of this proportion. The proportion of “golden section” became the most important architectural instrument in the first half of the 20-th century. This instrument made it possible to design beautiful and comfortable buildings (Le Corbusier). We tried to find a geometric way of building spiral structures which would be similar to natural ones. We solved this problem with the help of the developed algorythm the geometric characteristics of the cells of which spiral structures are built were investigated. It was found out that the cells of “golden” spiral structures don't have any special characteristics if compare with the cells of other spiral structures. During our work we found some spiral structures which have optimal geometric characteristics. These structures let's call them radial-hexagonal, have maximal area of a cell, though they have minimum perimeter. We also defined the main difference in the growing strategy of animate and inanimate structures. Inanimate structures grow by means of addition external elements. Animate structures grow by means of constant pushing of new elements which appear in the centre towards periphery. The optimal filling of the plane in the process of such growing is possible only by “golden section” of “right” and “left” spirals.
keywords spirals, spiral lattices, a proportion of "gold section”
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id caadria2008_64_session6b_529
id caadria2008_64_session6b_529
authors Rügemer, Jörg
year 2008
title Form Follows Tool: How the mere existence of a 2D laser cutter does influences architectural design in education?
doi https://doi.org/10.52842/conf.caadria.2008.529
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 529-535
summary The paper is aimed to examine the influence of a digital laser cutter on the design process within the College of Architecture and Planning, University of Utah, Salt Lake City. The tool functions as a peripheral output device within a simple “CAD-CAM” model manufacturing process in the area of architectural model making. It is a 2D laser cutter, accessible to the students since four years. The paper has a critical look at how the machine’s availability, its possibilities, as well as its promising time saving potential has changed the way students develop their design and process their projects. Rapid prototyping is becoming more and more an integral and important part of our design studios. With the adoption of the laser cutter, the model making procedure has changed from a relatively time-consuming, but immediately controllable process, to a procedure where one has to spatially re-think the elements that need to be produced, in order to adapt to the necessary digital workflow or process.
keywords 2D Laser Cutter, Digital Design Development, Digital Model Manufacturing Process, Analogue Model Assemblage
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2008_51_session5a_417
id caadria2008_51_session5a_417
authors Schimek, Heimo; Milena Stavric, Albert Wiltsche
year 2008
title The Intelligence of ornaments: Exploring ornamental ways of Affordable Non-Standard Building Envelopes
doi https://doi.org/10.52842/conf.caadria.2008.417
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 417-425
summary The purpose of this research is to explore ornamental patterns which can be used to enhance materials characteristics in low-cost building envelopes. We use standard building materials (sheets of cross-laminated timber) and develop a parametric design framework for the assembly. Existing rules of ornamental geometry are applied to a parametric controlled structural model so as to endow the building parts both with stability and aesthetics. The concepts of mass customization and “File to factory” support the digital fabrication of a non-repetitive pattern in façade construction and lead to reduced construction costs and building time.
keywords Ornament, symmetry, parametric design, building shell, affordable non-standard architecture, mass customization
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_508844 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002