CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
doi https://doi.org/10.52842/conf.acadia.2016.140
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2008_186
id ecaade2008_186
authors Bourdakis, Vassilis
year 2008
title Low Tech Approach to 3D Urban Modeling
doi https://doi.org/10.52842/conf.ecaade.2008.959
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 959-964
summary Over the last decade various examples of urban 3D models have been created employing various techniques for data collection and model building. The problems faced are well documented, issues of accuracy, complexity and utility of the models has also been addressed. This paper presents a low tech approach to accurate city modeling focusing on engineering applications, browsing/experiencing applications as well as multi-layering time based analyses, historical info overlaying for use in interactive real time applications (museum exhibitions, research projects for behavioral patterns of users in 3D urban environments, marketing, tourism, etc). The pros and cons of the proposed methodology are analyzed and ways forward suggested.
keywords Urban modeling, photogrammetric techniques, 3D modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2008_59_session6a_487
id caadria2008_59_session6a_487
authors Chevrier, C.; J.P. Perrin
year 2008
title Interactive parametric modelling: POG a tool the cultural heritage monument 3D reconstruction
doi https://doi.org/10.52842/conf.caadria.2008.487
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 487-493
summary Historic monument and archaeological site 3D reconstruction is nowadays often required for many applications (scientific and architectural studies, virtual visits for a better understanding of the monument, etc). This task is very time-consuming. Automating the modelling of the most common components could ease this 3D work and produce accurate, consistent and re-usable models. Based upon compound rules of architectural elements but also upon various other data sources such as photographs and 3D laser scans, we have conceived and developed an interactive tool for virtual 3D reconstruction of heritage monuments. It allows a quick modelling and accurate adjustments to the measured data. This tool could be a great help for architects and archaeologists. Research first has began with the study of classical architecture, and has gone on with other architectural styles. Architectural elements are described with parametric data, then generated by our tool. Our main application context was the town of Nancy in France where there are lots of classical architecture buildings which allow us to test our tool. It will be further extended to be applied to other architectural styles and will be combined with photogrammetry methods.
keywords parametric modelling, cultural heritage, 3D model
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2008_17_session2a_143
id caadria2008_17_session2a_143
authors Kaewlai, Pornpis; Pinyo Jinuntuya, Pizzanu Kanongchaiyos
year 2008
title Interactive Feasibility-based CAAD System for Infrastructure and Open Space Planning in Housing Project Design
doi https://doi.org/10.52842/conf.caadria.2008.143
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 143-148
summary The decision support system developed in this research is aimed to the conceptual scheme of project focusing on infrastructure planning and open space design in the architectural context for housing project. Alternative design sets are provided within the limitations, and possibilities to be further evaluated appropriately. This system helps architects and developers to analyze relationships of physical environment, architectural requirements and the overall of project-related factors with real-time cost estimation. Factors for cost estimation derived from the beginning to the end of project will be manipulated simultaneously. Architects and developers can use this design simulation to address the physical data with real-time cost estimation, provide alternative results, and design evaluation for overall project’s feasibility. The software of our research is not just a tool for design & planning automation in feasibility analysis. It will be an interactive decision support system for both developers and planners aspects. The system was developed by SketchUp Ruby Application Programming Interface. The results will be presented into two ways. Firstly, 2D and 3D modeling will be used for interactive visualization in design and planning of the beginning process. Subsequently, numbers and additional factors in details will be used to show relationship between architectural environment and feasibility-based information to help architects and developers collaboratively analyze the land use planning and open space design for housing project. In evaluation process, the developed software is tested with the project preceding and the future project of Bangkok area under constraints and regulations of Building Control Act of Thailand. In conclusion, this system will make effectiveness in design process and management of the construction knowledge. The decision support systems should be designed to makes explicit use of both planning analysis aspect and knowledge-based decision making.
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2008_081
id sigradi2008_081
authors Kirschner, Ursula
year 2008
title Study of digital morphing tools during the design process - Application of freeware software and of tools in commercial products as well as their integration in AutoCAD
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This research work examines methods of experimental designing with CAAD in a CAD laboratory with architecture students as the testing persons. Thereby the main focus is on the early phase of finding forms, in which different techniques with digital media are tried out in the didactic architectural design lessons. In these work have been traced the influences of the media employed on the design processes and combined the approaches of current CAAD research with aspects from classic design theory. For mathematical rules of proportion, atmospheric influence factors and analogy concepts in architecture, I have developed design methods which have been applied and verified in several series of seminars. (Kirschner, U.: 2000, Thesis, a CAAD supported architectural design teaching, Hamburg, school of arts). Previous experimental exercises showed that morphological sequences of modeling are effective sources for playful designing processes. In the current work these approaches are enhanced and supplemented by different morphological architectural concepts for creating shapes. For this purpose 2D based software like Morphit, Winmorph and other freeware were used. Whereas in the further development of this design technique we used 3D freeware morphing programs like zhu3D or Blender. The resulting morphological shapes were imported in CAD and refined. Ideally the morphing tool is integrated in the modeling environment of the standard software AutoCAD. A digital city model is the starting basis of the design process to guarantee the reference to the reality. The applied design didactic is predicated on the theories of Bernhard Hoesli. The act of designing viewed as „waiting for a good idea“ is, according to him, unteachable; students should, in contrast, learn to judge the „the force of an idea“. On the subject of morphology a form-generating method in the pre-design phase has been tested. Starting from urban-planning lines on an area map, two simple geometric initial images were produced which were merged by means of morphing software. Selected images from this film sequence were extruded with CAAD to produce solid models as sectional drawings. The high motivation of the students and the quality of the design results produced with these simple morphing techniques were the reason for the integration of the artistic and scientific software into the creative shape modeling process with the computer. The students learned in addition to the „bottom up “and „ top down” new design methods. In the presentation the properties and benefits of the morphing tools are presented in tables and are analyzed with regard to the architectural shape generating in an urban context. A catalogue of criteria with the following topics was developed: user friendliness, the ability of integrating the tools or as the case may be the import of data into a CAD environment, the artistic aspects in terms of the flexibility of shape generating as well as the evaluation of the aesthetic consideration of shapes.
keywords Architectural design, freeware morphing software, AutoCAD
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2012_046
id caadria2012_046
authors Lertsithichai, Surapong
year 2012
title Building Thailand's tallest Ganesh: CAD/CAM integration in conventional metal fabrication
doi https://doi.org/10.52842/conf.caadria.2012.337
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 337–346
summary Ganesh (Ganesa or Ganesha) is a Hindi god well known for his distinguishable elephant head and widely revered as the god of success or remover of obstacles. Patrons in Thailand have worshipped Ganesh and respected him by means of erecting statues of Ganesh in various poses and sizes throughout the country. In late 2008, the people of Chacheongsao, a province located East of Bangkok, decided to create Thailand’s tallest standing Ganesh statue made with bronze reaching heights up to 39 meters and situated on the Bangpakong river bank overseeing the city and its people. The author and design team was approached by representatives from Chacheongsao and commissioned to advise the process from conception to construction. The challenge started with seeking appropriate computer-aided design and manufacturing technologies and innovative processes to guide the design team throughout the production. The 0.60-meter bronze cast sculpture of the Ganesh was scanned using a 3D optical scanner to generate a solid model of the statue. A surface model was then extracted from the 3D model to firstly determine the most efficient structural support within the statue and secondly to generate surface strips for the foundry to create actual bronze casts. The construction of the project began early 2009 and the statue has since been erected from its base to currently its head. During construction, the author and design team has encountered several problems translating pixels to parts. Several errors have occurred during the mould and cast production process as well as construction errors on site causing mismatches of the structure and surface, misalignments, and protruding structural supports and joints. The lessons learned from this project is documented and analysed with hopes to create a more effective process for future projects with similar requirements.
keywords CAD/CAM; 3D scanner; CNC milling; metal fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

_id cdc2008_091
id cdc2008_091
authors Neumann, Oliver
year 2008
title Digitally Mediated Regional Building Cultures
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 91-98
summary Designs are complex energy and material systems and products of diverse cultural, economic, and environmental conditions that engage with their extended context. This approach relates architecture to the discourse on complexity. The design research described in this paper introduces an extended definition of ecology that expands the scope of design discourse beyond the environmental performance of materials and types of construction to broader cultural considerations. Parallel to enabling rich formal explorations, digital modeling and fabrication tools provide a basis for engaging with complex ecologies within which design and building exist. Innovative design applications of digital media emphasize interdependencies between new design methods and their particular context in material science, economy, and culture. In British Columbia, influences of fabrication and building technology are evident in the development of a regional cultural identity that is characterized by wood construction. While embracing digital technology as a key to future development and geographic identity, three collaborative digital wood fabrication projects illustrate distinctions between concepts of complexity and responsiveness and their application in design and construction.
email
last changed 2009/01/07 08:05

_id acadia08_134
id acadia08_134
authors Peters, Brady
year 2008
title Copenhagen Elephant House: A Case Study of Digital Design Processes
doi https://doi.org/10.52842/conf.acadia.2008.134
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 134-141
summary This paper outlines the digital design processes involved in the design and construction of the new Elephant House at Copenhagen Zoo. Early design concepts for the canopy were tested using physical sketch models. The geometric complexity of these early physical models led to the involvement of the Specialist Modelling Group and the use of the computer to digitally sketch 3D CAD models. After many studies, the complex form of the canopies was rationalised using torus geometry. A computer program was written to generate the canopy glazing and structure. This parametric system was developed to be a design tool, and was developed by an architectural designer working with the team. Through its use the team were able to explore more design options, and alter the design farther along in the design process; however, this generative tool was created largely as a CAD efficiency tool. Another series of computer programs were written to generate and populate a shading system based on environmental analysis. Unlike the computer program that generated the structure and glazing, this program was not developed to make the generation of complex geometric structures more efficient, but developed to explore computational approaches that would have been impossible without the computer. Most of the canopy’s design was communicated to fabricator through a geometry method statement, a method that has been proven to be effective in the past. The project completed in June 2008.
keywords Complex Geometry; Computation; Design; Generative; Sustainability
series ACADIA
last changed 2022/06/07 08:00

_id ijac20108101
id ijac20108101
authors Phan, Viet Toan; Seung Yeon Choo
year 2010
title Augmented Reality-Based Education and Fire Protection for Traditional Korean Buildings
source International Journal of Architectural Computing vol. 8 - no. 1, 75-91
summary This study examines an application of Augmented Reality technology (AR) for Korean Cultural Traditional Buildings, specifically, the Namdaemun Gate, "National Treasure No 1" of the Republic of Korea. Unfortunately, in February 2008, the Namdaemun Gate burned down, despite the efforts of many firemen, as the main difficulty was getting the fire under control without any structural knowledge of the wooden building. Hence, with the great advances in digital technology, an application of virtual technical information to traditional buildings is needed, and the new technology of AR offers many such advantages for digital architectural design and construction fields. While AR is already being considered as new design approach for architecture, outdoor AR is another practical application that can take advantage of new wearable computer equipment (Head-mounted display also know as HMD, position and orientation sensors, and mobile computing) to superimpose virtual graphics of traditional buildings (in this case, Namdaemun Gate) in a real outdoor scene. Plus, outdoor AR also allows the user to move freely around and inside a 3D virtual construction, thereby offering important training opportunities, for example, specific structural information in the case of firemen and mission planning in the case of a real-life emergency. In this example, the proposed outdoor AR system is expected to provide important educational information on traditional wooden building for architects, archaeologists, and engineers, while also assisting firemen to protect such special buildings.
series journal
last changed 2019/05/24 09:55

_id acadia08_214
id acadia08_214
authors Schlueter, Arno; Frank Thesseling
year 2008
title Balancing Design and Performance in Building Retrofitting: A Case Study Based on Parametric Modeling
doi https://doi.org/10.52842/conf.acadia.2008.214
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 214-221
summary Retrofitting the existing building stock will become one of the key fields of action for architects in the future. Due to the raised awareness of CO2 emissions related to the energy consumption of buildings, architects have to increasingly consider parameters influencing the energy performance of their retrofit designs. This is a complex task especially in the early design stages as multiple dependencies between building form, construction and technical systems influence overall energy performance. The inability to cope with this complexity often leads to simple solutions such as the application of massive insulation on the outside, neglecting aesthetic expression and design flexibility. Digital models storing multidisciplinary building information make it possible to include performance parameters throughout the architectural design process. In addition to the geometric parameters constituting the form, semantic and topological parameters define building element properties and their dependencies. This offers an integrated view of the building. We present a case study utilizing mulit-parametric façade elements within a building information model for an integrated design approach. The case study is based on a retrofit project of a multi-family house with very poor energy performance. Within a design workshop a parametric building model was used for the development of the designs. An integrated analysis tool allowed an immediate performance assessment without importing or exporting building data. The students were able to freely define geometric and performance parameters to develop their design solution. Balancing between formal expression and energy performance lead to integrated design sketches, resulting in surprising solutions for the given design task.
keywords BIM; Integrative; Parametric; Performance; Sustainability
series ACADIA
last changed 2022/06/07 07:57

_id ecaade2008_138
id ecaade2008_138
authors Sdegno, Alberto
year 2008
title Palladio’s Bridges: Graphic Analysis and Digital Interpretations
doi https://doi.org/10.52842/conf.ecaade.2008.043
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 43-50
summary The paper presents some results of a research on the digital reconstruction of some bridges designed by Andrea Palladio. The use of new technologies has enabled us to investigate the morphology of every single element and to be compared each other. Using the method of video animation, we have analyzed some of them in order to simulate the human perception and to understand their spatial configuration, but also to visualize the point of view of a man crossing a river or a canal. The last step was to prepare the models for producing some physical maquettes with the technique of rapid prototyping that have enabled us to verify the quality of the digital construction. Some different kinds of powder were used to identify the best one for the representation of architecture.
keywords Digital reconstruction, geometric analysis, unbuilt projects, video, rapid prototyping
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia08_222
id acadia08_222
authors Westre, Aaron
year 2008
title Complexity Machine 1: A 3D Modeling Application Implementing Behavioral Simulation
doi https://doi.org/10.52842/conf.acadia.2008.222
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 222-229
summary Complexity Machine 1 is a software application developed by the author as a Master of Architecture thesis project at the University of Minnesota. The software acts as a platform for exploring three dimensional form produced via behavioral simulation. Specifically, the behaviors are modeled on emergent group dynamics found commonly in nature such as flocking, chasing, and evading. Though various commercial softwares and numerous small-scale architectural projects exist in this area, Complexity Machine 1 is intended as a freely available and generic platform for exploring the formal implications of these emergent behaviors. The simulated behaviors are governed by a variety of parameters and a set of eight simple rules. Formal results are influenced by these parameters and rules; along with scale, color, and geometric settings. The flexibility of the software allows users to investigate a vast array of potential forms, adjust settings in real time, and export the results for further manipulation. Complexity Machine 1 continues to be refined and improved towards the goal of providing an easy to use platform to designers for exploring forms that emerge from complex group behavior.
keywords Behavior; Complexity; Emergence; Flocking; Simulation
series ACADIA
last changed 2022/06/07 07:57

_id ddss2008-33
id ddss2008-33
authors Charlton, James A.; Bob Giddings and Margaret Horne
year 2008
title A survey of computer software for the urban designprocess
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary Urban design is concerned with the shape, the surface and the physical arrangement of all kinds of urban elements, the basic components that make up the built environment, at the level of buildings, spaces and human activities. It is also concerned with the non-visual aspects of the environment, such as noise, wind and temperature and humidity. The city square is a particular urban element which can take many forms and its geometrical relationships such as maximum dimensions, ratio of width to length and building height to length have been analysed for centuries (Alberti 1475), (Vitruvius 1550), (Sitte 1889), (Corbett 2004). Within the current urban design process there are increasing examples of three dimensional computer representations which allow the user to experience a visual sense of the geometry of city squares in an urban landscape. Computer-aided design and Virtual Reality technologies have recently contributed to this visual assessment, but there have been limited attempts at 3D computer representations which allow the user to experience a greater sense of the urban space. This paper will describe a survey of computer tools which could support a more holistic approach to urban design and which could be used to simulate a number of urban texture and urban quality aspects. It will provide a systematic overview of currently available software that could support the simulation of building density, height, colour and style as well as conditions relating to noise, shading, heat, natural and artificial light. It will describe a methodology for the selection and filtering of appropriate computer applications and offer an initial evaluation of these tools for the analysis and representation of the three-dimensional geometry, urban texture and urban quality of city centre spaces. The paper is structured to include an introduction to the design criteria relating to city centre spaces which underpins this research. Next the systematic review of computer software will be described, and selected tools will undergo initial evaluation. Finally conclusions will be drawn and areas for future research identified.
keywords Urban design, Software identification, 3D modelling, Pedestrian modelling, Wind modelling, Noise mapping, Thermal comfort, VR Engine
series DDSS
last changed 2008/09/01 17:06

_id ddss2008-32
id ddss2008-32
authors Chiaradia, Alain; Christian Schwander, Jorge Gil, Eva Friedrich
year 2008
title Mapping the intangible value of urban layout (i-VALUL): Developing a tool kit for the socio-economic valuation of urbanarea, for designers and decision makers
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary In this paper we present the development of a GIS tool kit for the socioeconomic valuation of urban areas towards the creation of sustainable communities, describing the project context, development process, the tool kit’s structure, its main tools and initial feedback from its use. We then present the plan for training sessions and pilot projects where the tool kit is going to be used, and conclude with the discussion of the development of a single integrated tool to be used beyond the life of the ‘i-VALUL’ project. This project was supported by the UCL led UrbanBuzz programme within which UEL is a prime partner.
keywords Urban planning, spatial analysis, design support tools, evaluation system, GIS
series DDSS
last changed 2008/09/01 17:06

_id sigradi2009_805
id sigradi2009_805
authors Gonçalves Costa, Luís Gustavo; Arivaldo Leão de Amorim
year 2009
title Geração de Ortofotos para Produção de Mapas de Danos [Ortophoto creation for damage map production ]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The present work integrates the ongoing Master Degree Research Project entitled "Damage Map Representation and Pathology Database (Cronidas) Creation". This paper aims to discuss the search for alternatives in the development of a map of damages to be applied on historical buildings in order to assist preservation and restoration projects. Orthophotos of the facades and of the internal walls of buildings will be produced; once generated, these images are vectorized and transformed in drawings which represent the pathologies, in other words, the damage map. The research the following softwares: PhotoModeler®Pro5 for the generation of the orthophotos, Photoshop®CS3 for image treatment, and AutoCAD®2008 for tracing the relevant areas.
keywords damage map; conservation and restoration project; ortophoto; vectorization; building pathologies
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id sigradi2009_1129
id sigradi2009_1129
authors Matsubara, Juliana; Carlos V. Vaz; Gabriela Celani; Edison Fávero
year 2009
title The miniature city: the use of rapid prototyping techniques to make urban scale models.
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The aim of the present paper is to describe a case study about the production of scale models of large urban areas with the use of digital prototyping techniques. Throughout the year 2008, the Laboratory for Automation and Prototyping in Architecture and Construction (LAPAC) was commissioned with the production of a scale model of the State University of Campinas´ campus. Laser-cutting and Selective Laser Sintering were used to produce the terrain and the buildings. The products that resulted from this research demonstrate that rapid prototyping processes are extremely helpful to produce scale models of large urban areas.
keywords Concept; scale model; process; digital prototyping
series SIGRADI
email
last changed 2016/03/10 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_809939 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002