CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 489

_id ddss2004_ra-33
id ddss2004_ra-33
authors Diappi, L., P. Bolchim, and M. Buscema
year 2004
title Improved Understanding of Urban Sprawl Using Neural Networks
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 14020-2408-8, p. 33-49
summary It is widely accepted that the spatial pattern of settlements is a crucial factor affecting quality of life and environmental sustainability, but few recent studies have attempted to examine the phenomenon of sprawl by modelling the process rather than adopting a descriptive approach. The issue was partly addressed by models of land use and transportation which were mainly developed in the UK and US in the 1970s and 1980s, but the major advances were made in the area of modelling transportation, while very little was achieved in the area of spatial and temporal land use. Models of land use and transportation are well-established tools, based on explicit, exogenouslyformulated rules within a theoretical framework. The new approaches of artificial intelligence, and in particular, systems involving parallel processing, (Neural Networks, Cellular Automata and Multi-Agent Systems) defined by the expression “Neurocomputing”, allow problems to be approached in the reverse, bottom-up, direction by discovering rules, relationships and scenarios from a database. In this article we examine the hypothesis that territorial micro-transformations occur according to a local logic, i.e. according to use, accessibility, the presence of services and conditions of centrality, periphericity or isolation of each territorial “cell” relative to its surroundings. The prediction capabilities of different architectures of supervised Neural networks are implemented to the south Metropolitan area of Milan at two different temporal thresholds and discussed. Starting from data on land use in 1980 and 1994 and by subdividing the area into square cells on an orthogonal grid, the model produces a spatial and functional map of urbanisation in 2008. An implementation of the SOM (Self Organizing Map) processing to the Data Base allows the typologies of transformation to be identified, i.e. the classes of area which are transformed in the same way and which give rise to territorial morphologies; this is an interesting by-product of the approach.
keywords Neural Networks, Self-Organizing Maps, Land-Use Dynamics, Supervised Networks
series DDSS
last changed 2004/07/03 22:13

_id acadia08_448
id acadia08_448
authors Alfaris, Anas; Riccardo Merello
year 2008
title The Generative Multi-Performance Design System
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 448-457
doi https://doi.org/10.52842/conf.acadia.2008.448
summary This paper proposes a framework for an integrated computational design system. This design system builds on the strengths inherent in both generative synthesis models and multi-performance analysis and optimization. Four main design mechanisms and their mathematical models are discussed and their integration proposed. The process of building the design system begins by a top-down decomposition of a design concept. The different disciplines involved are decomposed into modules that simulate the respective design mechanisms. Subsequently through a bottom-up approach, the design modules are connected into a data flow network that includes clusters and subsystems. This network forms the Generative Multi-Performance Design System. This integrated system acts as a holistic structured functional unit that searches the design space for satisfactory solutions. The proposed design system is domain independent. Its potential will be demonstrated through a pilot project in which a multi-performance space planning problem is considered. The results are then discussed and analyzed.
keywords Analysis; Behavior; Generative; Optimization; Performance
series ACADIA
type normal paper
last changed 2022/06/07 07:54

_id caadria2018_033
id caadria2018_033
authors Bai, Nan and Huang, Weixin
year 2018
title Quantitative Analysis on Architects Using Culturomics - Pattern Study of Prizker Winners Based on Google N-gram Data
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 257-266
doi https://doi.org/10.52842/conf.caadria.2018.2.257
summary Quantitative studies using the corpus Google Ngram, namely Culturomics, have been analyzing the implicit patterns of culture changes. Being the top-standard prize in the field of Architecture since 1979, the Pritzker Prize has been increasingly diversified in the recent years. This study intends to reveal the implicit pattern of Pritzker Winners using the method of Culturomics, based on the corpus of Google Ngram to reveal the relationship of the sign of their fame and the fact of prize-winning. 48 architects including 32 awarded and 16 promising are analyzed in the printed corpus of English language between 1900 and 2008. Multiple regression models and multiple imputation methods are used during the data processing. Self-Organizing Map is used to define clusters among the awarded and promising architects. Six main clusters are detected, forming a 3×2 network of fame patterns. Most promising architects can be told from the clustering, according to their similarity to the more typical prize winners. The method of Culturomics could expand the sight of architecture study, giving more possibilities to reveal the implicit patterns of the existing empirical world.
keywords Culturomics; Google Ngram; Pritzker Prize; Fame Pattern; Self-Organizing Map
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia08_152
id acadia08_152
authors Biloria, Nimish
year 2008
title Morphogenomic Urban and Architectural Systems: An Investigation into Informatics Oriented Evolution of Form: The Case of the A2 Highway
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 152-157
doi https://doi.org/10.52842/conf.acadia.2008.152
summary This research paper exemplifies upon a novel information integrated generative design method: Morphogenomics, being experimented with at Hyperbody, TU Delft. Morphogenomics, a relatively new research area, which deals with the intricacies of morphological informatics. This paper furthermore discusses an ongoing Morphogenmoics oriented design-research case: the development of a Distributed Network-city along the A2 highway, Netherlands. The A2 highway, development is a live project seeking urban development on either side of this busy highway. Hyperbody, during the course of this research initiative developed a series of real-time interactive computational tools focusing upon the collaborative contextual generation of a performative urban and architectural morphology for the A2 highway. This research paper elaborates upon these computational techniques based Morphogenomic approach and its resultant outcomes.
keywords Computation; Evolution; Flocking; Information; Morphogenesis
series ACADIA
last changed 2022/06/07 07:54

_id sigradi2008_077
id sigradi2008_077
authors Briones, Carolina
year 2008
title A collaborative project experience in an architectural framework, working with Open Source applications and physical computing [Diseño de Plataformas Digitales e Interactivas: una experiencia educativa trabajando colaborativamente con aplicaciones de Código Abierto y Computación Física]
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Nowadays, thanks to the telecommunication revolution and therefore the massive spread of Internet, we have seen the come up of international architectural offices with branches located in different continent, working in a collaborative fashion, surpassing physical and time frontiers. At the same time, the multidisciplinary work between designers, architects, engineers, programmers and even biologist, between others, have been taking place in the new network society. All transformations also supported by the arising of FOSS (Free Open Source Software) and the virtual communities behind them, which allow the creation of non-traditional or specific software, the association between disciplines, and also, the formation of meeting scenarios for a mixture of individuals coming up with multiple motivation to coexist in collaborative environment. Furthermore, it is possible to argue that Open Source applications are also the reflection of a social movement, based on the open creation and exchange of information and knowledge. Do the appeared of FOSS compel us to re-think our working and teaching methods? Do they allow new modes of organizing and collaborating inside our architectural practices?. This paper would like to address these questions, by presenting the results of the “Experience Design” course, which by implementing teaching methods based on Open Source principles and cutting-edge tools, seeks to approach students to these new “way of do”, knowledge and methodologies, and overall, focus them on the science behind the computer. This paper describes the “Experience Design” course, in which architectural graduate students of Universidad Diego Portales (Chile), put for first time their hands on the creation of interactive interfaces. By acquiring basic knowledge of programming and physical computing, students built in a collaborative way a responsive physical installation. The course use as applications “Processing” and “Arduino”. The first one is an Open Source programming language and environment for users who want to program images, animation, and interactions. It has a visual context and serve as a software sketchbook and professional production tool. Processing is a project initiated by Ben Fry and Casey Reas, at the MIT Media Lab (www.processing.org). The second is an Open Source electronics prototyping platform based on flexible, easy-to-use hardware and software. Arduino has a microcontroller (programmed with Processing language) which can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators (www.arduino.cc). Both environments shared a growing community of people working in related projects and extending useful assistance for beginners. In this paper it is presented the current state of the pilot course and some of the initials results collected during the process. Students and teacher’s debates and evaluations of the experience have been exposed. Together with a critical evaluation in relation to the accomplishment of the effort of place together different disciplines in one collaborative project akin, architecture, design, programming and electronic. Finally, futures modifications of the course are discussed, together with consideration to take in account at the moment of bring Open Source and programming culture into the student curriculum.
keywords Physical computing, teaching framework, Open Source, Interactive Installation
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2016_027
id ascaad2016_027
authors Cocho-Bermejo, Ana
year 2016
title Time in Adaptable Architecture - Deployable emergency intelligent membrane
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 249-258
summary The term "Parametricism" widespread mainly by Patrick Schumacher (Schumacher, 2008) is worthy of study. Developing the concept of Human Oriented Parametric Architecture, the need of implementing time as the lost parameter in current adaptive design techniques will be discussed. Morphogenetic processes ideas will be discussed through the principle of an adaptable membrane as a case study. A model implementing a unique Arduino[i] on the façade will control its patterns performance through an Artificial Neural Network that will understand the kind of scenario the building is in, activating a Genetic Algorithm that will optimize the insulation performance of the ETFE pillows. The system will work with a global behavior for façade pattern performance and with a local one for each pillow, giving the option of individual sun-shading control. Machine learning implementation will give the façade the possibility to learn from the efficacy of its decisions through time, eliminating the need of a general on-off behavior.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaade2008_167
id ecaade2008_167
authors Gatermann, Harald
year 2008
title Location-based 4D-Reconstruction
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 945-950
doi https://doi.org/10.52842/conf.ecaade.2008.945
summary Architects do not only need 3D-models for the planning process, but as well for the process of visualizing information. In this projects we as architects were asked to show the lifetime-process of an industrial complex (a colliery - now used as industrial museum) over a period of more than one hundred years: the growth of the complex, the demolition of certain buildings, the network between the collieries in the neighbourhood. Google Earth as software platform allows recipients from all over the world to get an insight in four dimensions: the location based context including the time axis. For showing the world under the surface interactive animations or films are included.
keywords 3d-model, 4d-model, city-model, timeline, location-based
series eCAADe
email
last changed 2022/06/07 07:51

_id ddss2008-02
id ddss2008-02
authors Gonçalves Barros, Ana Paula Borba; Valério Augusto Soares de Medeiros, Paulo Cesar Marques da Silva and Frederico de Holanda
year 2008
title Road hierarchy and speed limits in Brasília/Brazil
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary This paper aims at exploring the theory of the Social Logic of Space or Space Syntax as a strategy to define parameters of road hierarchy and, if this use is found possible, to establish maximum speeds allowed in the transportation system of Brasília, the capital city of Brazil. Space Syntax – a theory developed by Hillier and Hanson (1984) – incorporates the space topological relationships, considering the city shape and its influence in the distribution of movements within the space. The theory’s axiality method – used in this study – analyses the accessibility to the street network relationships, by means of the system’s integration, one of its explicative variables in terms of copresence, or potential co-existence between the through-passing movements of people and vehicles (Hillier, 1996). One of the most used concepts of Space Syntax in the integration, which represents the potential flow generation in the road axes and is the focus of this paper. It is believed there is a strong correlation between urban space-form configuration and the way flows and movements are distributed in the city, considering nodes articulations and the topological location of segments and streets in the grid (Holanda, 2002; Medeiros, 2006). For urban transportation studies, traffic-related problems are often investigated and simulated by assignment models – well-established in traffic studies. Space Syntax, on the other hand, is a tool with few applications in transport (Barros, 2006; Barros et al, 2007), an area where configurational models are considered to present inconsistencies when used in transportation (cf. Cybis et al, 1996). Although this is true in some cases, it should not be generalized. Therefore, in order to simulate and evaluate Space Syntax for the traffic approach, the city of Brasília was used as a case study. The reason for the choice was the fact the capital of Brazil is a masterpiece of modern urban design and presents a unique urban layout based on an axial grid system considering several express and arterial long roads, each one with 3 to 6 lanes,
keywords Space syntax, road hierarchy
series DDSS
last changed 2008/09/01 17:06

_id cdc2008_099
id cdc2008_099
authors Harrison, David and Michael Donn
year 2008
title Using Project Information Clouds to Preserve Design Stories within the Digital Architecture Workplace
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 99-104
summary During the development of an architectural design a series of design stories form. These stories chronicle the collective decision making process of the diverse project team. Current digital design processes often fail to record these design stories because of the emphasis placed on the concise and accurate generation of the virtual model. This focus on an allencompassing digital model is detrimental to design stories because it limits participation, consolidates information flow and risks editorialisation of design discussion. Project Information Clouds are proposed as a digital space for design team participants to link, categorise and repurpose existing digital information into comprehensible design stories in support of the digital building model. Instead of a discrete tool, the Project Information Cloud is a set of principles derived from a proven distributed information network, the World Wide Web. The seven guiding principles of the Project Information Cloud are simplicity, modular design, decentralisation, ubiquity, information awareness, evolutionary semantics and context sensitivity. These principles when applied to the development of existing and new digital design tools are intended to improve information exchange and participation within the distributed project team.
email
last changed 2009/01/07 08:05

_id ddss2008-31
id ddss2008-31
authors Heurkens, Erwin W.T.M.
year 2008
title The Urban Decision RoomApplication and Evaluation of an Urban Management Instrument
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary The Urban Decision Room (UDR) should be placed in the tradition of urban design and planning discipline that is taught, and into which research is carried out, at the Faculty of Architecture at the Delft University of Technology. The UDR was developed at the faculty as one of the new design and planning methods with its own specific features. The UDR is specifically aimed at decision-making processes in the practice of urban planning, and particularly at complex urban area development projects. The background to the design enables the UDR to support planning decisions that are made at urban planning element level. The participants in the interactive UDR sessions are asked to provide concrete solutions for urban planning design problems (in terms of preferences for particular functions, number of plots, etc.) and to enter them in a simulation model. A computer network is then used to calculate the common solution space of all the proposals, which is then projected onto a central screen. This outcome generally provides the basis for further discussions and negotiations, after which another round as described above can be held. The paper first focuses on the background and the main features of the UDR system. Secondly, the decision-making issue and a description of a specific Urban Decision Room model, the UDR Heijsehaven will be explained. Thirdly the structure of, and the experiences from, the experimental sessions with the Urban Decision Room Heijsehaven are described. After that the results of the evaluation of the UDR system by participants is presented and finally the follow-up assignment for the UDR system is carried out.
keywords Urban Decision Room, UDR Heijsehaven, Urban Renewal Project, Urban Planning, Urban Management Instrument, Common Solution Space, Decision Support System
series DDSS
last changed 2008/09/01 17:06

_id ecaade2008_142
id ecaade2008_142
authors Hoog, Jochen; Wolff-Plottegg, Manfred
year 2008
title Real Virtualities - Architecture 2.0
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 817-822
doi https://doi.org/10.52842/conf.ecaade.2008.817
summary The Institute of Architecture and Design, TU Vienna has bought a virtual island in Second Life (SL) in order to use it in a design course (5 ECTS). The goal was to introduce students to new ways in which computers in a web based network like SL can be used to generate designs by using end user scripting within a virtual 3D environment. After a short introduction into the basics of SL and to the rules and conditions of multi-user virtual environments (MUVE’s) the students worked within that kind of spatial software as a place and as hyper media. The main focus of this paper is to stress and to describe the differences of the student’s results compared to common architectural design courses.
keywords Algorithmic architecture, Second Life, virtual space design, learning platform
series eCAADe
email
last changed 2022/06/07 07:50

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia08_174
id acadia08_174
authors Jaskiewicz, Tomasz
year 2008
title ‘iPortals’ as a Case Study Pre-Prototype of an Evolving Network of Interactive Spatial Components
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 174-181
doi https://doi.org/10.52842/conf.acadia.2008.174
summary The art and craft of design and creation of buildings is undergoing a radical paradigm shift. This shift is being driven by diverse novel cross-disciplinary technical possibilities, as well as by ongoing cultural transformations. They all, directly or indirectly, originate from omnipresent advancements in information technologies. Instant and ubiquitous availability of information and immediate access to computing power pervasively penetrating our lives is profoundly transforming our culture. This phenomenon has enormous implications for architecture in a multitude of ways1. ¶ Firstly, the speed of changes that occur in modern-day culture and society makes it inconvenient or even entirely impossible to design buildings with fixed and permanent functionalities. As lifestyle patterns, production methods and environmental conditions, to name a few factors only, may now dramatically change from one day to another, architecture has to become flexible. It has to allow dynamic, active, or even pro-active adaptation and customization of spaces on many levels of its functionality2. ¶ Secondly, these profound cultural changes are not only of technical relevance. In its process-driven character, information technology strongly mandates the already widely recognized ontology of becoming, proclaimed by the prominent minds of contemporary philosophy and science. This process-oriented worldview, supported by latest technological possibilities3, has caused a radical change in the common sense of the manner in which architecture has to be understood and dealt with4. As an effect, it requires an in-depth reconsideration of the nature of processes of both creation and participation in spatial environments.
keywords Environment; Interactive; Open Systems; Prototype; Skin
series ACADIA
last changed 2022/06/07 07:52

_id jemtrud02_paper_eaea07
id jemtrud02_paper_eaea07
authors Jemtrud, Michael
year 2008
title Emerging Technologies in a Participatory Design Studio_between Carleton University and Pennsylvania State University
source Proceedings of the 8th European Architectural Endoscopy Association Conference
summary As a preliminary report on a proof-of-concept design studio conducted during the spring semester of 2007 between the Carleton Immersive Media Studio (CIMS) at Carleton University in Ottawa and the Immersive Environment Laboratory (IEL) at Pennsylvania State University, the paper first describes the implementation of this network-centric collaborative design platform. The report articulates the “staging” of the conditions of possibility for a dynamic interplay between technological mediation and the reality of making, then compares the use of high bandwidth technology with customized symmetrical toolsets in the tele-collaborative educational environment, versus commercial toolsets deployed over moderate bandwidth connections. In each setting, the collaborative environment is assessed according to issues encountered by students and design outcomes. The effectiveness of the digitally mediated collaborative studio is also gauged in terms of student reaction to the learning process via feedback surveys and questionnaires.
keywords design, collaboration, tele-presence, visualization, broadband
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id ecaade2008_175
id ecaade2008_175
authors Jeong, Yongwook; Trento, Armando
year 2008
title Interleaving Semantics: a Filter Mediated Communication Model to Support Collaboration in Multi-Disciplinary Design
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 643-652
doi https://doi.org/10.52842/conf.ecaade.2008.643
summary The purpose of collaboration is to integrate the separate knowledge possessed by the participants in the design process into one meaningful whole. Centralized data structures, showed that the AEC industry is so fragmented that the data-centric approach is not feasible, for technical and procedural reasons. The shared database, minimizing the complexity of translating different form of representation, quickly becomes too large and unwieldy to support the dynamic process of multi-disciplinary collaborative design. In this paper, we propose a distributed model that includes a mechanism to facilitate the participants’ intentions more effectively by incorporating semantics into their representations. We also present how the semantics would be authored and published through the mechanism so that a higher level of shared understanding among the participants would be achieved.
keywords Multidisciplinary Collaboration, Semantic Network, Ontology, Artificial Agent
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2008_132
id ecaade2008_132
authors Kanellos, Anastasios; Hanna, Sean
year 2008
title Topological Self-Organisation
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 459-466
doi https://doi.org/10.52842/conf.ecaade.2008.459
summary The problem of filling a given volume with a 3-dimensional structural network lattice comprising a certain number of nodes is considered. The proposed method of approach is contained within the framework of iterative physical dynamic simulation and implements a generative algorithm that features a particle-spring system. The algorithm is able to suitably arrange nodes in the space of a volumetric envelope and establish connections between them through local rules of self-organisation, thus producing efficient space frames without having prior knowledge of either geometry or topology of the network lattice.
keywords Physical dynamic simulation, particle-spring system, space frame
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id sigradi2008_097
id sigradi2008_097
authors Nogueira de Carvalho, Ana Paula; Marcelo Tramontano, Marlon Rubio Longo
year 2008
title D.O.S. Designers on Spot: Communication processes and Learning actions [Processos de Comunicação e Ações de Aprendizagem]
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary D.O.S. Designers on Spot: Communication processes and Learning actions This paper introduces some concepts that have been studied at D.O.S. project as part of the learning and communication actions. These concepts are relevant to the project as they brought to the team some improvements about design experiences based on network communication, as well as some reflections done by designers and researchers in different parts of the world. The project proposed by our research group is part of growing demands for experiments able to explore the Advanced Internet for fast transferring large packages of content. The activities are divided in two different instances: one is called exploratory research and aims to identify enrichments that a collaborative practice would add to the design process and to the production of interactive prototypes as well. The other one is related to remote learning strategies. It aims at investigating new methods of collective design and prototyping of objects with integrated media, and the diffusion of these techniques and methods in classroom environments, as a teaching strategy. Following are three different aspects about design experiences. The first one, called communication processes, presents a panoramic view about different ways the participants of a remote design session can share information. It targets to point and to systematize design actions by exploring transversal characteristics among designers, teams and the resulting objects. In order to achieve it, we have to understand some relations between remote communication and design processes, which explore issues in the project phases of conception, production and interaction. This exploration is part of the search for a conceptual scope for the D.O.S. project development, with an emphasis on the communication specificities between remote designers and the design process. The second one, learning action processes, introduces some issues about academic teaching and learning of design through remote and collaborative media. The third one, Virtual Design Studio (VDS), is related to the previous and aims to present a specific kind of remote design sessions targeting to create strategies to use new communication and information technologies (ICT) on remote project instances. The teaching of Architecture and Design is, above all, multidisciplinary – this means that it is not limited to the knowledge of one field of activity but, by a wide range of subjects from different areas - including Computing. The introduction of ICT (Information and Communication Technologies) in the project process is commonly associated to the final stages, and not to the creation. The contribution of the digital environment is provided for the use of various software, which are not restricted to those responsible for graphical representation: programs responsible for the organization of data in tables, for example, enable monitoring developments with clarity. The multidisciplinary consideration supports new variables in the process of design, working quickly and accurately on the possibilities, which modifies the agency of decisions and management tasks.
keywords Advanced internet, collaborative design, virtual design studio
series SIGRADI
email
last changed 2016/03/10 09:56

_id ecaade2008_013
id ecaade2008_013
authors Papanikolaou, Dimitrios
year 2008
title Evaluating Assemblies of Planar Parts Using the Liaison Graph and System Dynamics
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 767-774
doi https://doi.org/10.52842/conf.ecaade.2008.767
summary Current research on design and fabrication of planar part assemblies focuses on generative design methods, leaving analysis and evaluation of assemblability to be studied with empirical methods such as physical mockups. As a consequence, there is little understanding on whether a design is assemblable, or on how much time the assembling process might take. This paper proposes a new formal method to evaluate assemblability of interlocking planar parts that uses Network Analysis to evaluate assembly structure and System Dynamics to evaluate performance of assembling process.
keywords System Dynamics, Network Analysis, assembly, liaison graph, Digital Fabrication
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2008_166
id sigradi2008_166
authors Papanikolaou, Dimitris
year 2008
title Digital Fabrication Production System Theory: Towards an Integrated Environment for Design and Production of Assemblies
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary A Digital Fabrication Production System (DFPS) is a concept describing a set of processes, tools, and resources that will be able to produce an artifact according to a design, fast, cheap, and easy, independently of location. A DFPS project is a complex assembly of custom parts that is delivered by a network of fabrication and assembly processes. This network is called the value chain. The workflow concept of a DFPS is the following: begin design process with a custom geometric form; decompose it into constructible parts; send the part files for fabrication to various locations; transport all parts at the construction site at the right time; finally, assemble the final artifact. Conceptually it means that based on a well structured value chain we could build anything we want, at anyplace, at controllable cost and quality. The goals of a DFPS are the following: custom shapes, controllable lead time, controllable quality, controllable cost, easiness of fabrication, and easiness of assembly. Simply stated this means to build any form, anywhere, accurately, cheap, fast, and easy. Unfortunately, the reality with current Digital Fabrication (DF) projects is rather disappointing: They take more time than what was planned, they get more expensive than what was expected, they involve great risk and uncertainty, and finally they are too complex to plan, understand, and manage. Moreover, most of these problems are discovered during production when it is already late for correction. However, there is currently no systematic approach to evaluate difficulty of production of DF projects in Architecture. Most of current risk assessment methods are based on experience gathered from previous similar cases. But it is the premise of mass customization that projects can be radically different. Assembly incompatibilities are currently addressed by building physical mockups. But physical mockups cause a significant loss in both time and cost. All these problems suggest that an introduction of a DFPS for mass customization in architecture needs first an integrated theory of assembly and management control. Evaluating feasibility of a DF project has two main problems: first, how to evaluate assemblability of the design; second, how to evaluate performance of the value chain. Assemblability is a system’s structure problem, while performance is a system’s dynamics problem. Structure of systems has been studied in the field of Systems Engineering by Network Analysis methods such as the Design Structure Matrix (DSM) (Steward 1981), and the liaison graph (Whitney 2004), while dynamics of systems have been studied by System Dynamics (Forrester 1961). Can we define a formal method to evaluate the difficulty of production of an artifact if we know the artifact’s design and the production system’s structure? This paper formulates Attribute Process Methodology (APM); a method for assessing feasibility of a DFPS project that combines Network Analysis to evaluate assemblability of the design with System Dynamics to evaluate performance of the value chain.
keywords Digital Fabrication, Production System, System Dynamics, Network Analysis, Assembly
series SIGRADI
email
last changed 2016/03/10 09:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_932005 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002