CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 406

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2008_080
id sigradi2008_080
authors Andrés, Roberto
year 2008
title Hybrid Art > Synthesized Architecture
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper investigates possible intersections between some contemporary artistic modalities and architectural practice. At first, it describes and discusses different uses of art in architectural history. Through the analyzes of Le Corbusier’s artistic and architectural practices, it observes the limits of looking at art as only ‘inspiration’ for architectural form and points to the necessity of surpassing this formal approach. More than bringing pictorial ‘inspiration’, art, as a experimental field, can change our architectural procedures and approaches - a much richer and powerful addition to the development of architecture. It discusses then, the confluence of architecture, information and communication technologies. Very commonly present in our contemporary life, not only on the making of architecture – computer drawings and modeling of extravagant buildings – nor in ‘automated rooms’ of the millionaire’s houses. Televisions, telephones and computers leave the walls of our houses “with as many holes as a Swiss cheese”, as Flusser has pointed. The architecture has historically manipulated the way people interact, but this interaction now has been greatly changed by new technologies. Since is inevitable to think the contemporary world without them, it is extreme urgent that architects start dealing with this whole universe in a creative way. Important changes in architecture occur after professionals start to research and experiment with different artistic medias, not limiting their visions to painting and sculpture. The main hypothesis of this paper is that the experiments with new media art can bring the field of architecture closer to information and communication technologies. This confluence can only take form when architects rise questions about technology based interaction and automation during their creative process, embodying these concepts into the architecture repertoire. An educational experience was conducted in 2007 at UFMG Architecture School, in Brazil, with the intention of this activity was to allow students to research creatively with both information technology and architecture. The students’ goal was to create site-specific interventions on the school building, using physical and digital devices. Finally, the paper contextualizes this experience with the discussion above exposed. Concluding with an exposition of the potentialities of some contemporary art modalities (specially the hybrid ones) in qualifying architectural practices.
keywords Architecture; Information and Communication Technologies; Digital Art; Site Specific Art; Architectural Learning.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2008_083
id ecaade2008_083
authors Belcher, Daniel; Johnson, Brian R.
year 2008
title ARchitectureView
doi https://doi.org/10.52842/conf.ecaade.2008.561
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 561-568
summary We present a system for viewing architectural building models – specifically Building Information Modeling (BIM) models – in 3D using an Augmented Reality Tangible User Interface (TUI) and a Magic Lens interaction metaphor. ARchitectureView is meant to facilitate communication and collaboration around a shared model. We present the system overview and a number of use scenarios in which the interface would serve to improve communication across disciplines and varied technical backgrounds, while supporting a rich and coherent common understanding.
keywords Augmented Reality, Building Information Modeling, Magic Lens, Tangible User Interface
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2008_077
id ecaade2008_077
authors Graf, Robert; Yan, Wei
year 2008
title Automatic Walkthrough Utilizing Building Information Modeling to Facilitate Architectural Visualization
doi https://doi.org/10.52842/conf.ecaade.2008.555
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 555-560
summary This paper presents a new system that supports automatic path planning for walkthrough in building models, using information retrieved from Building Information Modeling (BIM). It can automatically generate a path that explores all or part of the rooms in a building. During a real-time walkthrough, users will be able to follow the path while interactively controlling their viewing angles. That way, users can take guided tours while simultaneously looking around to examine the spaces. We expect the system to be useful in design review because BIM models of design can be easily brought into the system that allows reviewers to start walkthrough immediately and interactively. The significance of the work is that the system has potential applications for visualization of complex building design.
keywords Walkthrough, Building Information Modeling, Visualization
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2008_6_session1b_053
id caadria2008_6_session1b_053
authors Gu, Ning;Singh Vishal, London Kerry, Ljiljana Brankovic, Taylor Claudelle
year 2008
title Adopting Building Information Modeling (BIM) as Collaboration Platform in the Design Industry
doi https://doi.org/10.52842/conf.caadria.2008.053
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 53-60
summary This paper discusses the preliminary findings of an ongoing research project aimed at developing a technological, operational and strategic analysis of adopting BIM in AEC/FM (Architecture-Engineering-Construction/Facility Management) industry as a collaboration tool. Outcomes of the project will provide specifications and guidelines as well as establish industry standards for implementing BIM in practice. This research primarily focuses on BIM model servers as a collaboration platform, and hence the guidelines are aimed at enhancing collaboration capabilities. This paper reports on the findings from: (1) a critical review of latest BIM literature and commercial applications, and (2) workshops with focus groups on changing work-practice, role of technology, current perception and expectations of BIM. Layout for case studies being undertaken is presented. These findings provide a base to develop comprehensive software specifications and national guidelines for BIM with particular emphasis on BIM model servers as collaboration platforms.
keywords Building Information Modelling, Collaboration Platform
series CAADRIA
email
last changed 2022/06/07 07:51

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2008_17_session2a_143
id caadria2008_17_session2a_143
authors Kaewlai, Pornpis; Pinyo Jinuntuya, Pizzanu Kanongchaiyos
year 2008
title Interactive Feasibility-based CAAD System for Infrastructure and Open Space Planning in Housing Project Design
doi https://doi.org/10.52842/conf.caadria.2008.143
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 143-148
summary The decision support system developed in this research is aimed to the conceptual scheme of project focusing on infrastructure planning and open space design in the architectural context for housing project. Alternative design sets are provided within the limitations, and possibilities to be further evaluated appropriately. This system helps architects and developers to analyze relationships of physical environment, architectural requirements and the overall of project-related factors with real-time cost estimation. Factors for cost estimation derived from the beginning to the end of project will be manipulated simultaneously. Architects and developers can use this design simulation to address the physical data with real-time cost estimation, provide alternative results, and design evaluation for overall project’s feasibility. The software of our research is not just a tool for design & planning automation in feasibility analysis. It will be an interactive decision support system for both developers and planners aspects. The system was developed by SketchUp Ruby Application Programming Interface. The results will be presented into two ways. Firstly, 2D and 3D modeling will be used for interactive visualization in design and planning of the beginning process. Subsequently, numbers and additional factors in details will be used to show relationship between architectural environment and feasibility-based information to help architects and developers collaboratively analyze the land use planning and open space design for housing project. In evaluation process, the developed software is tested with the project preceding and the future project of Bangkok area under constraints and regulations of Building Control Act of Thailand. In conclusion, this system will make effectiveness in design process and management of the construction knowledge. The decision support systems should be designed to makes explicit use of both planning analysis aspect and knowledge-based decision making.
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2008_158
id ecaade2008_158
authors Kaga, Atsuko; Sugawara, Shihomi
year 2008
title Research on the Visualization for Analyzing City Changes
doi https://doi.org/10.52842/conf.ecaade.2008.939
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 939-944
summary To perceive such changes of city space visually, a three-dimensional (3D) city space model is effective. The use of buildings in a city space is complex, reflecting the number of stories, and the number of stories in many cases. Furthermore, environmental parameters, such as opening a shop developed for conditions of the location, the existence of a building which is easy to divert to some other purpose, a managerial layer, and the whole country, is closely related to city change. A city change can be analyzed from various perspectives if such information can also be accumulated and displayed. If it is expressed in two dimensions, it will be restricted, but if expressed in 3D, the use situation of city space can be grasped quickly. Commercial 3D GIS software is useful for visualizing such a 3D city space model while referring to attribute information. However, such software is expensive and its use is restricted. For this study, highly extensible 3D modeling software is used to develop a technique for visualizing city spaces using its attribute information. Then the developed script is applied to an actual city model in Japan.
keywords City Analysis, Urban design, 3D-model, City Visualization
series eCAADe
email
last changed 2022/06/07 07:52

_id cdc2008_085
id cdc2008_085
authors Morad, Sherif
year 2008
title Building Information Modeling and Architectural Practice: On the Verge of a New Culture
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 85-90
summary The introduction of machine-readable tools for architectural design, which do not just focus on mere geometry or presentation, but on the richness of information embedded computationally in the design, has impacted the way architects approach and manipulate their designs. With the rapid acceleration in building information modeling (BIM) as a process which fosters machine-readable applications, architects and other participants in the design and construction industry are using BIM tools in full collaboration. As a trend which is already invading architectural practice, BIM is gradually transforming the culture of the profession in many ways. This culture is developing new properties for its participants, knowledge construction mechanisms, resources, and production machineries. This paper puts forward the assumption that BIM has caused a state of transformation in the epistemic culture of architectural practice. It appears that practice in the architecture, engineering and construction (AEC) industry is still in this phase of transformation; on the edge of developing a new culture. The paper attempts to address properties of such an emerging culture, and the new role architects are faced with to overcome its challenges.
email
last changed 2009/01/07 08:05

_id ecaade2008_074
id ecaade2008_074
authors Pauwels, Pieter; Verstraeten, Ruben; Meeus, Wim; De Meyer, Ronald; Van Campenhout, Jan
year 2008
title Industry Foundation Classes: A Space-Based Model Scheme?
doi https://doi.org/10.52842/conf.ecaade.2008.117
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 117-124
summary This paper illustrates our findings concerning space based design methodologies and interoperability issues for today’s Building Information Modeling (BIM) environments. A method is elaborated which enables building designers to perform an automated energy use analysis, based on an Industry Foundation Classes (IFC) model derived from a commercial BIM environment, in this case Autodesk Revit 9.1. A prototype application was built, which evaluates the building model as well as vendor-neutral exchange mechanisms, in accordance with the Flemish Energy Performance Regulation (EPR) standard. Several issues regarding the need for space-based building models are identified and algorithms are developed to overcome possible shortcomings.
keywords IFC, BIM, Revit, EPBD
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2008_136
id ecaade2008_136
authors Riether, Gernot; Butler, Tom
year 2008
title Simulation Space
doi https://doi.org/10.52842/conf.ecaade.2008.133
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 133-142
summary It is the attempt here to test simulation tools in relation to a design process and speculate on strategies to not just integrate simulation tools in the design process but to use these tools to construct a new design environment for the architect.
keywords BIM, building information modeling, performance, simulation
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia08_214
id acadia08_214
authors Schlueter, Arno; Frank Thesseling
year 2008
title Balancing Design and Performance in Building Retrofitting: A Case Study Based on Parametric Modeling
doi https://doi.org/10.52842/conf.acadia.2008.214
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 214-221
summary Retrofitting the existing building stock will become one of the key fields of action for architects in the future. Due to the raised awareness of CO2 emissions related to the energy consumption of buildings, architects have to increasingly consider parameters influencing the energy performance of their retrofit designs. This is a complex task especially in the early design stages as multiple dependencies between building form, construction and technical systems influence overall energy performance. The inability to cope with this complexity often leads to simple solutions such as the application of massive insulation on the outside, neglecting aesthetic expression and design flexibility. Digital models storing multidisciplinary building information make it possible to include performance parameters throughout the architectural design process. In addition to the geometric parameters constituting the form, semantic and topological parameters define building element properties and their dependencies. This offers an integrated view of the building. We present a case study utilizing mulit-parametric façade elements within a building information model for an integrated design approach. The case study is based on a retrofit project of a multi-family house with very poor energy performance. Within a design workshop a parametric building model was used for the development of the designs. An integrated analysis tool allowed an immediate performance assessment without importing or exporting building data. The students were able to freely define geometric and performance parameters to develop their design solution. Balancing between formal expression and energy performance lead to integrated design sketches, resulting in surprising solutions for the given design task.
keywords BIM; Integrative; Parametric; Performance; Sustainability
series ACADIA
last changed 2022/06/07 07:57

_id acadia11_60
id acadia11_60
authors Speaks, Michael
year 2011
title New Values of New Design
doi https://doi.org/10.52842/conf.acadia.2011.060
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 60-63
summary Driven by advances in building and information technology and accelerated by the tumultuous period of global economic restructuring that commenced in 2008, architecture and interior design practice is today confronted with the necessity of fundamental change. According to the “Building Futures” group at the Royal Institute of British Architects and US-based “Design Futures Council,” both of which this past year published studies on this very topic, a great deal depends on what happens in China and other emerging markets, where many European and US firms now have offices. And that is not only because these are the most vibrant markets for architecture and design services, but also because the demands placed on practitioners in these markets are fundamentally changing the way buildings are designed and delivered, at home and abroad. Both studies suggest that all sectors of the A/E/C industry will face increasingly fierce competition that will, of necessity, force practices large and small to compete less on cost and more on value. In the very near future buildings and their interiors will be valued almost entirely based on performance—economic, cultural, environmental—and only those firms able to create these and other forms of added value will survive. Disruptive technologies like building information modeling and integrated product delivery will enable all firms, even those competing solely on the basis of cost, to design better buildings and deliver them more efficiently. But in such a fiercely competitive global marketplace, efficiency alone will not be enough to guarantee market viability. The real differentiator will instead be design.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:56

_id caadria2008_50_session5a_409
id caadria2008_50_session5a_409
authors Wessel, Ginette M.; Eric J. Sauda, Remco Chang
year 2008
title Urban Visualization: Urban Design and Computer Visualization
doi https://doi.org/10.52842/conf.caadria.2008.409
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 409-416
summary Historically, the city represents not just a collection of buildings, but also the concrete cosmology of the world. The importance of geometry in this context is that one can be assured that one’s understanding of the form of the city will correspond to meaning. It is this reading that is the canonical visualization method of the city form. But contemporary urban designers are confronted by cities with overlapping systems of movement and information that has made the reading of geometry insufficient for an understanding of the city. Our interdisciplinary team of researchers has been studying issues related to urban visualization from the perspectives of urban design and computer visualization. Together, we have published work demonstrating how very large and disparate data sets can be visualized and integrated in unique ways. Building on this existing work that connects the two disciplines, this paper presents a survey of six urban design methodologies that may be useful for visualization. Each approach is described through a brief history, a conceptual overview and a diagrammatic exegesis. The conclusion presents an overview of the complementary natures of the discourses in urban design and computer visualization and a prospectus for application of the identified methodologies to computer urban visualization. We conclude that urban theories can inform urban visualization both as a method of informing generation and run-time simplification of 3D geometric modeling and in managing information visualization overlay issues for the very large, over-lapping data sets.
keywords Visualization: urbanism
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia08_478
id acadia08_478
authors Yan, Wie
year 2008
title Environment-Behavior Simulation: From CAD to BIM and Beyond
doi https://doi.org/10.52842/conf.acadia.2008.478
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 478-485
summary This paper describes our research on environment-behavior simulation and focuses on the modeling of built environments using Computer-Aided Design (CAD) and Building Information Modeling (BIM). Our environment-behavior simulation addresses the problem of predicting and evaluating the impacts of built environments on their human inhabitants. We present simulation systems comprising an agent-based virtual user model and building models created with CAD and BIM tools. We compare the use of CAD vs. BIM with two case studies for environment-behavior simulation, and describe the essential parts of modeling buildings for the simulation, including geometry modeling—how the building components are shaped, semantic modeling—what the building components are, and pattern modeling—how the building components are used by users. We conclude that a new extensible and pattern-embedded BIM system will be necessary to facilitate environment-behavior simulation.
keywords Behavior; BIM; Environment; Information; Simulation
series ACADIA
last changed 2022/06/07 07:57

_id 5d77
id 5d77
authors Adriane Borda; Neusa Félix; Janice de Freitas Pires; Noélia de Moraes Aguirre.
year 2008
title MODELAGEM GEOMÉTRICA NOS ESTÁGIOS INICIAIS DE APRENDIZAGEM DA PRÁTICA PROJETUAL EM ARQUITETURA. GEOMETRIC MODELING IN THE EARLY STAGES OF LEARNING PRACTICE ARCHITECTURAL DESIGN.
source 12th Iberoamerican Congress of Digital Graphics, SIGRADI, 2008, Havana. SIGRADI, Proceedings of the 12th Iberoamerican Congress of Digital Graphics.. Havana : Ministerio de Educacion Superior, 2008. p. 434-438.
summary This work invests on delimitation of a Geometric Modeling study program directed to students at the initial stages of Architecture. It is considered that the studies promote a qualified control of the form based on recognition of parameters which define it, moreover it also allows the enlargement of the students geometric vocabulary, important to the architectural design activities. In this way, the program advances on the appropriation of new concepts which surround the investigations on architectural design processes, such as the concept of shape grammar. Observing analysis and architectural composition practices based on such concept, contents of geometric modeling which are already being used in the context of post-graduation are identified to be transposed to the graduation context, along with the initial teaching practices of architectural design. The results refer to making the didactic material available, these materials have the objective of building references for the development of design practice which explore the reflection about the processes of creation and composition of architectural form in their geometric aspects.
keywords Architecture, Geometric Modeling, Shape grammar, Teaching/Learning
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:47

_id ijac20086405
id ijac20086405
authors Ahlquist, Sean; Fleischmann, Moritz
year 2008
title Elemental Methods for Integrated Architectures: Experimentation with Design Processes for Cable Net Structures
source International Journal of Architectural Computing vol. 6 - no. 4, 453-475
summary Tension active systems are compelling architectural structures having an intimate connection between structural performance and the arrangement of material. The direct flow of structural forces through the material makes these systems attractive and unique from an aesthetic point of view, but they are a challenge to develop from a design and an engineering perspective. Traditional methods for solving such structural systems rely on both analog modeling techniques and the use of highly advanced engineering software. The complexity and laborious nature of both processes presents a challenge for iterating through design variations. To experiment with the spacemaking capabilities of tension active systems, it is necessary to design methods that can actively couple the digital simulation with the analog methods for building the physical structure. What we propose is a designer-authored process that digitally simulates the behaviors of tension active systems using simple geometric components related to material and structural performance, activated and varied through elemental techniques of scripting. The logics for manufacturing and assembly are to be embedded in the digital generation of form. The intention is to transform what is a highly engineered system into an architectural system where investigation is as much about the determination of space and environment as it is about the arrangement of structure and material.
series journal
last changed 2009/03/03 07:48

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2008_24_session3a_193
id caadria2008_24_session3a_193
authors Biswas, Tajin; Tsung-Hsien Wang, Ramesh Krishnamurti
year 2008
title Integrating sustainable building rating systems with building information models
doi https://doi.org/10.52842/conf.caadria.2008.193
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 193-200
summary The transition from conventional to sustainable building depends on a number of factors— technological, environmental, economic and social. From a computer-aided design perspective, the first two are perhaps the most significant. We are working on a project with an emphasis on developing tools, to evaluate environmental consequences for design decision-making. Our current thrust is given to reducing energy usage as well as carbon emissions in buildings.
keywords Sustainable building rating system, Building information model
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2008_024
id ecaade2008_024
authors Boeykens, Stefan; Neuckermans, Herman
year 2008
title Representational Limitations and Improvements in Building Information Modeling
doi https://doi.org/10.52842/conf.ecaade.2008.035
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 35-42
summary This paper discusses advantages and limitations of different representation types, illustrated with examples from current commercial Building Information Modeling applications. There is still a potential benefit in more thoroughly adapting additional representations to access and manage project data.The paper presents arguments to adapt a hybrid approach, where multiple representations should form a series of interfaces to interact with a building model. Inspiration is derived from software applications not associated with Building Information Modeling.
keywords BIM, Representation, Design Software, Digital Building Model
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 20HOMELOGIN (you are user _anon_992849 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002