CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id ijac20086405
id ijac20086405
authors Ahlquist, Sean; Fleischmann, Moritz
year 2008
title Elemental Methods for Integrated Architectures: Experimentation with Design Processes for Cable Net Structures
source International Journal of Architectural Computing vol. 6 - no. 4, 453-475
summary Tension active systems are compelling architectural structures having an intimate connection between structural performance and the arrangement of material. The direct flow of structural forces through the material makes these systems attractive and unique from an aesthetic point of view, but they are a challenge to develop from a design and an engineering perspective. Traditional methods for solving such structural systems rely on both analog modeling techniques and the use of highly advanced engineering software. The complexity and laborious nature of both processes presents a challenge for iterating through design variations. To experiment with the spacemaking capabilities of tension active systems, it is necessary to design methods that can actively couple the digital simulation with the analog methods for building the physical structure. What we propose is a designer-authored process that digitally simulates the behaviors of tension active systems using simple geometric components related to material and structural performance, activated and varied through elemental techniques of scripting. The logics for manufacturing and assembly are to be embedded in the digital generation of form. The intention is to transform what is a highly engineered system into an architectural system where investigation is as much about the determination of space and environment as it is about the arrangement of structure and material.
series journal
last changed 2009/03/03 07:48

_id acadia08_472
id acadia08_472
authors Key, Sora; Mark D Gross; Ellen Yi-Luen Do
year 2008
title Computing Spatial Qualities For Architecture
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 472-477
doi https://doi.org/10.52842/conf.acadia.2008.472
summary Computational representation of spatial qualities can lead us to a better understanding of how we construct spatial concepts. Analyses of spatial qualities can support architects in reasoning about the form of a configuration, helping them predict the consequences of a design. ¶ In this paper we present three definitions (enclosure, viewfield, continuity) that describe experiential qualities of architectural spaces. Our project aims to provide computable definitions to these qualities to describe common spatial experiences that are implicitly understood by architects. The description, using familiar terms, reveals the analytical structure of spatial qualities that is based on the geometry of the physical elements. ; We therefore introduce a graphic editor, Descriptor, that provides visualization of spatial qualities as the designer diagrams building elements. The system calculates perceived relationships (surrounded, visible, nearby, nearest) between a viewpoint and the architectural elements based on their geometric properties such as location and distance. The relationships are the components of the three qualities we define. We also present a use scenario to demonstrate how one might use our Descriptor system during early design. ¶ Descriptor is an attempt to formalize descriptions of the spatial qualities to help beginners understand how to make design decisions. In the future, we plan to extend the set of qualities and add detailed attributes of the physical elements to the system.
keywords Analysis; Computation; Environment; Representation; Spatial
series ACADIA
last changed 2022/06/07 07:52

_id ijac20086401
id ijac20086401
authors Maleki, Maryam M.; Woodbury, Robert F.
year 2008
title Reinterpreting Rasmi Domes with Geometric Constraints:A Case of Goal-seeking in Parametric Systems
source International Journal of Architectural Computing vol. 6 - no. 4, 375-395
summary Geometry has long been a generator of architecture. In traditional Persian architecture, Rasmi domes project a drawing onto a predefined 3D geometry. In fact, the word 'rasmi' and the verb for drawing in Persian have the same linguistic root. Projection is readily done in manual drawings or conventional CAD programs. From a constraint perspective, the dome is constrained by the drawing and the 3D geometry. If the latter constraint is replaced by invariance of distance on the original drawing, a class of domes results, but members of this class cannot be computed conventionally. Class members are developable from a planar layout of triangles, which is, in turn, generated by a simple drawing rule. This yields a parametric structure of four parameters. Three determine the initial planar diagram. One determines configuration. Further, domes in the class are mechanisms: they are not fully specified by the constraints and parameters. We develop the geometric constraints representing the location of the defining points of a dome and present a goal-seeking algorithm to solve the constraints within a propagation-based parametric modeling system.
series journal
last changed 2009/03/03 07:48

_id ijac20076201
id ijac20076201
authors Said, Suzana; Embi, Mohamed R.
year 2008
title A Parametric Shape Grammar of the Traditional Malay Long-Roof Type Houses
source International Journal of Architectural Computing vol. 6 - no. 2, pp. 121-144
summary A parametric shape grammar of the traditional Malay houses (TMH) built in the past century is presented. The grammar, which consists of rules for generating the form and structure of TMH, is derived from simple geometric representations of the houses. The rules first derive the basic unit structures that form the shapes of the TMH. Nine basic shapes have been identified that form the main vocabulary elements of the grammar. Parameterized polygons and lines define each basic shape. Ranges of values assigned to the variables describing the parameterized polygons and lines are presented. The shape addition rules are used to characterize the compositional aspects of TMH style. Evidences of these basic shapes or their combinations have been documented by previous researchers and are used as a way of explaining the built forms of the TMH. The scope of the study is currently limited to the original TMH of the bumbung panjang (long roof) type in which the key features of the houses are easily discernible from the side view.
series journal
last changed 2008/10/01 21:49

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2008_077
id sigradi2008_077
authors Briones, Carolina
year 2008
title A collaborative project experience in an architectural framework, working with Open Source applications and physical computing [Diseño de Plataformas Digitales e Interactivas: una experiencia educativa trabajando colaborativamente con aplicaciones de Código Abierto y Computación Física]
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Nowadays, thanks to the telecommunication revolution and therefore the massive spread of Internet, we have seen the come up of international architectural offices with branches located in different continent, working in a collaborative fashion, surpassing physical and time frontiers. At the same time, the multidisciplinary work between designers, architects, engineers, programmers and even biologist, between others, have been taking place in the new network society. All transformations also supported by the arising of FOSS (Free Open Source Software) and the virtual communities behind them, which allow the creation of non-traditional or specific software, the association between disciplines, and also, the formation of meeting scenarios for a mixture of individuals coming up with multiple motivation to coexist in collaborative environment. Furthermore, it is possible to argue that Open Source applications are also the reflection of a social movement, based on the open creation and exchange of information and knowledge. Do the appeared of FOSS compel us to re-think our working and teaching methods? Do they allow new modes of organizing and collaborating inside our architectural practices?. This paper would like to address these questions, by presenting the results of the “Experience Design” course, which by implementing teaching methods based on Open Source principles and cutting-edge tools, seeks to approach students to these new “way of do”, knowledge and methodologies, and overall, focus them on the science behind the computer. This paper describes the “Experience Design” course, in which architectural graduate students of Universidad Diego Portales (Chile), put for first time their hands on the creation of interactive interfaces. By acquiring basic knowledge of programming and physical computing, students built in a collaborative way a responsive physical installation. The course use as applications “Processing” and “Arduino”. The first one is an Open Source programming language and environment for users who want to program images, animation, and interactions. It has a visual context and serve as a software sketchbook and professional production tool. Processing is a project initiated by Ben Fry and Casey Reas, at the MIT Media Lab (www.processing.org). The second is an Open Source electronics prototyping platform based on flexible, easy-to-use hardware and software. Arduino has a microcontroller (programmed with Processing language) which can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators (www.arduino.cc). Both environments shared a growing community of people working in related projects and extending useful assistance for beginners. In this paper it is presented the current state of the pilot course and some of the initials results collected during the process. Students and teacher’s debates and evaluations of the experience have been exposed. Together with a critical evaluation in relation to the accomplishment of the effort of place together different disciplines in one collaborative project akin, architecture, design, programming and electronic. Finally, futures modifications of the course are discussed, together with consideration to take in account at the moment of bring Open Source and programming culture into the student curriculum.
keywords Physical computing, teaching framework, Open Source, Interactive Installation
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2008_023
id ecaade2008_023
authors Ciblac, Thierry
year 2008
title Structure Computation Tools in Architectural Design
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 275-282
doi https://doi.org/10.52842/conf.ecaade.2008.275
summary Structure computation can be carried out in the very early steps of architectural design thanks to the generalization of the use of computers. So, architects can be interested by specific computing tools dedicated to mechanical simulations in design process, especially using interactivity. Researches on these kinds of tools are developed by the ARIAM-LAREA team in the Ecole Nationale Supérieure d’Architecture de Paris La Villette, using graphic statics with a dynamic geometry software, finite element method and tensile structure software. The specificities of such tools are presented through historical examples and students projects.
keywords Design, simulation, dynamic geometry, graphic statics, Finite Element Method
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2008_62_session6a_510
id caadria2008_62_session6a_510
authors Diniz, Nancy
year 2008
title Body tailored space: Configuring Space through Embodiment
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 510-517
doi https://doi.org/10.52842/conf.caadria.2008.510
summary With this project I propose that embodiment can be more emphasized and better supported in space-design frameworks. This paper presents background on several theories of embodiment since the beginning of the twentieth century to recent developments of the concept in tangible and social computing and anticipate that this reveals pathways for designing new embodiment framework systems for architecture. I suggest that architecture and interactive computing can share a common theoretical foundation in embodied interaction. The main thesis is for designers to use the body as an interface to understand how the interaction between a person and his/her surroundings arises and how our embodiment reveals other rich spatial qualities during the conception phase of design. This paper proposes a conceptual framework for embodied interaction based on the creation of real-time systems in order to instigate a framework for interactive processes that can help designers understand architecture phenomena and the performance of space. I present a design experiment on embodied performance space entitled “Body Tailored Space” where the boundaries of the human body are metaphorically extended into surrounding membranes.
keywords Embodiment; embodied interaction; interactive architecture; phenomenology; second order cybernetics
series CAADRIA
email
last changed 2022/06/07 07:55

_id ijac20076306
id ijac20076306
authors Dujovne, David Butelmann; Montoya, Claudio Labarca
year 2008
title Digital design and manufacture based on Chiloean boats
source International Journal of Architectural Computing vol. 6 - no. 3, pp. 317-333
summary This paper proposes a design methodology for the manufacture of complex, double-curved surfaces based on the digital reconstruction of traditional structural and constructive elements of Chiloean boats. It also suggests a beneficial association between digital design and CAD CAM for manufacture using locally crafted construction techniques. The incorporation of innovated contemporary digital design and fabrication tools into traditional construction systems, aims to optimize and perpetuate traditional artisanal craft construction of complex shapes developed in the south of Chile. The importance of this research in budget-restricted economies, lies in the possibility of applying local construction and assembly techniques to new sophisticated designs that may satisfy the country's architectural needs. Scale models are used to record the design process and constructive development while information flow charts document the design methodology for the construction of complex geometries.
series journal
last changed 2008/10/14 14:00

_id ecaade2008_070
id ecaade2008_070
authors Guéna, François; Untersteller, Louis-Paul
year 2008
title Computing Different Projections of a Polyhedral Scene from a Single 2D Sketch
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 195-200
doi https://doi.org/10.52842/conf.ecaade.2008.195
summary This paper presents the development of a tool which is capable of compute several projections of a polyhedral scene from a single axonometric or perspective projection. This projection is hand-drawn and may be incomplete. This sketch can be rotated with a kind of trackball and the tool computes in real-time new projections. In that way the designer can choose another view from which he is able to control and complete the sketch and carry on designing. So this tool can be useful for exploring architectural forms in the early phases of the design process. Unlike others freehand sketching interfaces, the system does not operate any reconstruction in 3D. Everything is computed in a 2D world.
keywords Architectural Design, Sketching, Projective Geometry, Duality, 3D Reconstruction
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia08_000
id acadia08_000
authors Kudless, Andrew; Neri Oxman, and Marc Swackhamer, editors
year 2008
title Silicon + Skin: Biological Processes and Computation
source Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008
doi https://doi.org/10.52842/conf.acadia.2008
summary Biological processes, computing and design make an inconvenient mix, a mix that challenges us to broaden our academic horizons at a time when we are thirsty for creative solutions to unprecedented global problems and opportunities. More than a mixture, it is about forming rhizomatic connections between these three systems of knowledge, brought together through design, mediated by computing and inspired by the wisdom ensconced in biological processes that have evolved over billions of years. The last few years together represent a watershed time for ACADIA. Themes ranging from digital fabrication, smart environments, expanding bodies, and synthetic landscapes have been taken up in the recent past. This year’s conference marks yet another year of pushing the envelope with a subject matter that is still on the frontiers of the emerging (and emergent) knowledge. ACADIA is proud to play a vanguard role in leading and facilitating this discourse. To this end, the outstanding team of conference chairs has put together a unique and exciting program. I would like to thank the chairs for their boldness, hard work and resourcefulness in bringing together a remarkable array of people, things, systems, and topics to the table. All evidence points to the emergence of ACADIA as THE forum for vanguard explorers from multiple disciplines. I hope that the seeds of discourses sown at this remarkable conference at the University of Minnesota will grow into significant movements in the future. Thank you!
series ACADIA
last changed 2022/06/07 07:49

_id ijac20086402
id ijac20086402
authors Larsen, Knut Einar; Schindler, Christoph
year 2008
title From Concept to Reality: Digital Systems in Architectural Design and Fabrication
source International Journal of Architectural Computing vol. 6 - no. 4, 397-413
summary One of the challenges for today's architectural designers is the establishment of continuous digital processes between design and fabrication. To achieve this, designers need to acquire knowledge about the production and the methods and tools involved. Two case studies organized at the Norwegian University of Science and Technology (NTNU) on digital timber fabrication investigate the new field of collaboration between architectural designers and fabricators. The studies demonstrate the design potential of acquiring insights into the fabricators' software and digital production machinery and reflect contemporary fabrication technology in formal expression. We identified two different approaches to formal exploration that we defined as "sophistication of the detail" and "variation of the element".
series journal
last changed 2009/03/03 07:48

_id ecaade2008_009
id ecaade2008_009
authors Lyon , Eduardo R.
year 2008
title Knowledge Based Design and Digital Manufacturing:
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 625-632
doi https://doi.org/10.52842/conf.ecaade.2008.625
summary This research explores new ways to integrate manufacturing knowledge in to design phases. Through the use of design for manufacturing (DfM) concept, and looking at relations between its potential application in component design and its implementation using digital manufacturing technologies, the author implemented a DfM model that varies from previous models by incorporated learning in the process. This process was based on the incremental development and refinement of design heuristics and metrics. The DfM model developed in this research is a process model to be implemented as a framework within educational settings. The final purpose is to provide better foundational constructs for design education and to improve teaching approaches that integrate design and manufacturing.
keywords Design Computing, Design for manufacturing, Knowledge Based Design, Digital Manufacturing
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2008_45_session4b_364
id caadria2008_45_session4b_364
authors Muramoto, Katsuhiko; Sonali Kumar, Michael Jemtrud, Danielle Wiley
year 2008
title Participation, Intersubjectivity, And Presence In a Digitally Mediated Workspace: A Participatory Design Studio between Pennsylvania State University and Carleton University
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 364-370
doi https://doi.org/10.52842/conf.caadria.2008.364
summary A paradigm shift in the world of architecture brought by the recent developments in visualization and communication technology not only offers us drastically different ways to collaborate, but also questions traditional location dependent collaborations. This new technology offers us new possibilities for a more phenomenologically rich mode of creative activity and participation. The goal of the Participatory Design Studio was to allow architecture students in multiple locations to collaborate in real-time by sharing computational resources, geometric datasets, and multimedia content including high-definition video. The technologies involved in this research include the National LambdaRail (layer 3, PacketNet with 1Gb/s connection) and CA*net 4 (Canadian broadband layer 2 with 10gb/s lightpath connectivity) allowing Standard Definition videoconference, utilization of Deep Computing Visualization, Remote Visual Networking (RVN) and Web Service access and control of the APN devices through the dashboard solution that makes integration seamless to the workflow and transparent to the user.
keywords design: collaboration; tele-presence; visualization; broadband
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2008_058
id ecaade2008_058
authors Niblock, Chantelle; Hanna, Raid
year 2008
title An Investigation of the Influence of Using the Computer on Cognitive Design Actions:
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 693-700
doi https://doi.org/10.52842/conf.ecaade.2008.693
summary This paper documents a research pilot study; it is a comparative investigation between an expert designer and a novice designer. The study used protocol analysis to examine design cognitive actions whilst using 3D digital media during the conceptual stage of design. The empirical study found novice designers capable of managing a design process of complex objects due to the increase in their contribution of design strategies to the overall process. The possible reason for this may be due to using free-form modelling with accuracy aids found in computing facilities. This provides evidence to suggest automated computing should be encouraged within the pedagogical framework of architectural design.
keywords Protocol Analysis, Design cognition, Complexity Management, Design Process
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2008_097
id sigradi2008_097
authors Nogueira de Carvalho, Ana Paula; Marcelo Tramontano, Marlon Rubio Longo
year 2008
title D.O.S. Designers on Spot: Communication processes and Learning actions [Processos de Comunicação e Ações de Aprendizagem]
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary D.O.S. Designers on Spot: Communication processes and Learning actions This paper introduces some concepts that have been studied at D.O.S. project as part of the learning and communication actions. These concepts are relevant to the project as they brought to the team some improvements about design experiences based on network communication, as well as some reflections done by designers and researchers in different parts of the world. The project proposed by our research group is part of growing demands for experiments able to explore the Advanced Internet for fast transferring large packages of content. The activities are divided in two different instances: one is called exploratory research and aims to identify enrichments that a collaborative practice would add to the design process and to the production of interactive prototypes as well. The other one is related to remote learning strategies. It aims at investigating new methods of collective design and prototyping of objects with integrated media, and the diffusion of these techniques and methods in classroom environments, as a teaching strategy. Following are three different aspects about design experiences. The first one, called communication processes, presents a panoramic view about different ways the participants of a remote design session can share information. It targets to point and to systematize design actions by exploring transversal characteristics among designers, teams and the resulting objects. In order to achieve it, we have to understand some relations between remote communication and design processes, which explore issues in the project phases of conception, production and interaction. This exploration is part of the search for a conceptual scope for the D.O.S. project development, with an emphasis on the communication specificities between remote designers and the design process. The second one, learning action processes, introduces some issues about academic teaching and learning of design through remote and collaborative media. The third one, Virtual Design Studio (VDS), is related to the previous and aims to present a specific kind of remote design sessions targeting to create strategies to use new communication and information technologies (ICT) on remote project instances. The teaching of Architecture and Design is, above all, multidisciplinary – this means that it is not limited to the knowledge of one field of activity but, by a wide range of subjects from different areas - including Computing. The introduction of ICT (Information and Communication Technologies) in the project process is commonly associated to the final stages, and not to the creation. The contribution of the digital environment is provided for the use of various software, which are not restricted to those responsible for graphical representation: programs responsible for the organization of data in tables, for example, enable monitoring developments with clarity. The multidisciplinary consideration supports new variables in the process of design, working quickly and accurately on the possibilities, which modifies the agency of decisions and management tasks.
keywords Advanced internet, collaborative design, virtual design studio
series SIGRADI
email
last changed 2016/03/10 09:56

_id caadria2008_47_session5a_383
id caadria2008_47_session5a_383
authors Paulini, Mercedes; Marc Aurel Schnabel
year 2008
title Surfing The City: Towards context-aware mobile exploration
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 383-390
doi https://doi.org/10.52842/conf.caadria.2008.383
summary This paper describes the rationale for a navigational system that supports context-based exploration of the urban environment. While many navigational tools support wayfinding, they are based on targeted search, requiring the user to have a predetermined destination. Existing applications do not offer navigational mechanisms that base their recommendations on the user’s unique context information. Customised recommendations present the user with relevant routes they may not have discovered on their own. In this paper, a parallel is drawn between wayfinding in the physical world and the virtual, with web surfing acting as a metaphor for a particular style of interaction with the physical environment. Similarly, the framework for this system presents suggested routes to the user according to their unique contextual setting, which is anticipated to allow a more explorative engagement with their physical environment.
keywords Mobile computing; context-awareness; urban interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2008_010
id ecaade2008_010
authors R. Lyon , Eduardo
year 2008
title CAD and CAM Systems Integration:
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 837-844
doi https://doi.org/10.52842/conf.ecaade.2008.837
summary CAM systems traduce design information from CAD systems in to different manufacturing routines in order to produce NC code for CNC machinery. The output from the CAM software is usually a simple text file of G and M code, usually containing thousand of lines of code. Later this code is transferred to a machine tool using a direct numerical control (DNC) program. This translation process becomes extremely important in developing a digital design and fabrication approach. Consequently the aim in this research is; to investigate CAD-CAM workflow; to analyze final product deviation from design intent; and to determine where in the workflow, and how design strategies and design decisions correlates to manufacturing results.
keywords Design Computing, CAD and CAM integration, Digital fabrication
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac20076102
id ijac20076102
authors Schein, Markus; Tessmann, Oliver
year 2008
title Structural Analysis as Driver in Surface-Based Design Approaches
source International Journal of Architectural Computing vol. 6 - no. 1, pp. 19-39
summary This research argues for novel strategies to integrate structural analysis data in architectural design. Instead of a linear procedure of analysis, synthesis, evaluation and post-rationalization a synthesis/evaluation loop is installed which embeds structural analysis data as design driver from early on. The approach regards structural performance as one design criteria within a network of different requirements. An equilibrium of multiple parameters is aspired to instead of a single-parameter-optimum. The research is conducted via a custom-made digital interface between 3d modelling software and an application for structural analysis of space frames. The information exchange provides the basis for successive strategies within a collaborative design process of spatial roof structures: negotiation of an overall form and a multi-dimensional improvement of space frame topologies by a Genetic Algorithm (GA).
series journal
last changed 2008/06/18 08:12

_id acadia08_142
id acadia08_142
authors Sprecher, Aaron; Paul Kalnitz
year 2008
title Degrees and Switches
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 142-151
doi https://doi.org/10.52842/conf.acadia.2008.142
summary In recent years, evolutionary biology has been the focus of post-Darwinist theories superseding the mere notion of variation with a concept called evolutionary development. The theory of evolutionary development, commonly referred to as evo-devo, follows a series of observations on the nature of organic developments and natural morphologies. Its main contribution rests on an evolutionary model that considers the similarities of genetic material forming organisms and their differences in morphological development due to switching mechanisms between the assigned genes. As observed by the American biologist Sean Carroll, evolution follows regulatory sequences of selector genes that are similar and can be found across various species of insects, plants and animals. ¶ This observation represents a counter-proposal to the old-modern evolutionary theories that looked at processes of adaptation as a function of the emergence of new genes. Evo-devo, on the contrary, recognizes that morphological differences are triggered by recombinatory switches that re-arrange genes in manifold ways to produce numerous characteristics of adaptation. ¶ From a design point of view, evo-devo has tremendous implications because it suggests that generative design protocols may induce sets of similar operations, yet stimulate a wide range of morphologies according to their sequential arrangements and activities. These generative design strategies include, among others, computational methods such as structural shape annealing and object-oriented analysis and design. While these methods are now integrating computing design practices, it is here proposed to review these two computational design methods in the context of three research projects.
keywords Algorithm; Evolution; Genetic; Object-Oriented; Stochastic
series ACADIA
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_528124 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002