CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id ecaade2008_058
id ecaade2008_058
authors Niblock, Chantelle; Hanna, Raid
year 2008
title An Investigation of the Influence of Using the Computer on Cognitive Design Actions:
doi https://doi.org/10.52842/conf.ecaade.2008.693
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 693-700
summary This paper documents a research pilot study; it is a comparative investigation between an expert designer and a novice designer. The study used protocol analysis to examine design cognitive actions whilst using 3D digital media during the conceptual stage of design. The empirical study found novice designers capable of managing a design process of complex objects due to the increase in their contribution of design strategies to the overall process. The possible reason for this may be due to using free-form modelling with accuracy aids found in computing facilities. This provides evidence to suggest automated computing should be encouraged within the pedagogical framework of architectural design.
keywords Protocol Analysis, Design cognition, Complexity Management, Design Process
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2008_19_session3a_161
id caadria2008_19_session3a_161
authors Oh, Yeonjoo; Mark D Gross, Ellen Yi-Luen Do
year 2008
title Computer-aided Critiquing systems Lessons Learned and New Research Directions
doi https://doi.org/10.52842/conf.caadria.2008.161
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 161-167
summary A critiquing system helps designers improve their design artifacts by providing feedback. Computer-aided critiquing systems have been built in many fields and provide us with useful lessons. In this paper we analyze existing critiquing systems in terms of (1) critiquing process, (2) critiquing rules, and (3) intervention techniques. Based on this analysis, we suggest new research directions for critiquing systems in the domain of architectural design.
series CAADRIA
email
last changed 2022/06/07 08:00

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia08_340
id acadia08_340
authors Chalmers, Chris
year 2008
title Chemical Signaling as a Model for Digital Process in Architecture
doi https://doi.org/10.52842/conf.acadia.2008.340
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 340-345
summary The role of the architect is quite literally one of assembly: synthesizing the various parts of a project into a cohesive whole. It is a difficult job, often requiring the architect to weave many seemingly contradictory concerns into a solution that benefits them all. It is not surprising then, that the many elegant and effective systems found in nature should be inspiring to the architect. Emerging fields like biomimicry and systems dynamics model the patterns of interaction between organisms and their environments in terms of dynamic part to part and part to whole relationships. ¶ Observations of real relationships between organisms and their environments, as they exist in nature, reveal complex feedback loops working across multiple scales. These feedback loops operate by the simultaneous action of two observed phenomena. The first is the classic phenotypic relationship seen when organisms of the same genetic makeup instantiate differently based upon differences in their environment. This is the relationship that was originally proposed by Charles Darwin in his theory of natural selection of 1859. Darwin’s model is unidirectional: the organism adapts to its environment, but not the other way around. It operates at the local scale as individual parts react to the conditions of the whole. (Canguilhem, 1952). ¶ The second phenomenon, which sees its effect at the global scale, is the individual’s role as consumer and producer in the flows of energy and material that surround it. It is the subtle and incremental influence of the organism upon its environment, the results of which are often invisible until they reach a catastrophic threshold, at which point all organisms in the system feel global changes. ; The research presented in this paper addresses the dialectic between organism and environment as each responds reciprocally to the others’ changing state. Such feedback loops act in a non-linear fashion, across nested scales in biological systems. They can be modeled to act that way in a digital design process as well. This research is an exploration into one such model and its application to architecture: the simple communication between organisms as they affect and are affected by their environments through the use of signal chemicals.
keywords Biology; Cellular Automata; Feedback; Material; Scripting
series ACADIA
last changed 2022/06/07 07:55

_id ddss2008-32
id ddss2008-32
authors Chiaradia, Alain; Christian Schwander, Jorge Gil, Eva Friedrich
year 2008
title Mapping the intangible value of urban layout (i-VALUL): Developing a tool kit for the socio-economic valuation of urbanarea, for designers and decision makers
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary In this paper we present the development of a GIS tool kit for the socioeconomic valuation of urban areas towards the creation of sustainable communities, describing the project context, development process, the tool kit’s structure, its main tools and initial feedback from its use. We then present the plan for training sessions and pilot projects where the tool kit is going to be used, and conclude with the discussion of the development of a single integrated tool to be used beyond the life of the ‘i-VALUL’ project. This project was supported by the UCL led UrbanBuzz programme within which UEL is a prime partner.
keywords Urban planning, spatial analysis, design support tools, evaluation system, GIS
series DDSS
last changed 2008/09/01 17:06

_id acadia08_182
id acadia08_182
authors Gibson, Michael; Kevin R. Klinger; Joshua Vermillion
year 2008
title Constructing Information: Towards a Feedback Ecology in Digital Design and Fabrication
doi https://doi.org/10.52842/conf.acadia.2008.182
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 182-191
summary As strategies evolve using digital means to navigate design in architecture, critical process-based approaches are essential to the discourse. The often complex integration of design, analysis, and fabrication through digital technologies is wholly reliant upon a process-basis necessitating the use of a design feedback loop, which reinforces critical decision-making and challenges the notions of how we produce, visualize, and analyze information in the service of production and assembly. Central to this process-based approach is the effective and innovative integration of information and the interrogation of material based explorations in the making of architecture. This fabrication ‘ecology’ forces designers to engage complexity and accept the unpredictability of emergent systems. It also exposes the process of working to critique and refine feedback loops in light of complex tools, methods, materials, site, and performance considerations. In total, strategies for engaging this ‘ecology’ are essential to accentuate our present understanding of environmental design and theory in relation to digital processes for design and fabrication. ¶ This paper recounts a design/fabrication seminar entitled “Constructing Information” in which architecture students examined an environmental design problem by way of the design feedback loop, where their efforts in applying digital design and fabrication methods were driven explicitly by material and site realities and where their work was executed, installed, and critically explored in situ. These projections raise important questions about how information, complexity, and context overlay and merge, and underscore the critical potential of visual, spatial, and material effects as part of a fabrication-oriented design process.
keywords Digital Fabrication; Ecology; Environment; Feedback; Performance
series ACADIA
last changed 2022/06/07 07:51

_id acadia08_208
id acadia08_208
authors Griffiths, Jason
year 2008
title Man + Water + Fan = Freshman: Natural Process of Evaporative Cooling and the Digital Fabrication of the ASU Outdoor Dining Pavilion
doi https://doi.org/10.52842/conf.acadia.2008.208
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 208-213
summary To the east of Johnson City TX is the Lyndon B. Johnson’s family home. Part of the Johnson Estate2 is given over to a working farm circa 1870 that presents various aspects of domestic practice from the era. This includes a desert fridge which is a simple four-legged structure with a slightly battered profile that’s draped in calico. Its principle is simple; water from an upturned jar is drawn by osmosis down the sides of the calico where it evaporates in wind currents drawn though a “dog run” between two log cabins. Cooled air circulates within the structure and where cheese and milk are kept fresh during the summer. The desert fridge is a simple system that reaches a state of equilibrium through the natural process of evaporation. ¶ This system provides a working model for a prototype structure for an outdoor dining pavilion that was designed and constructed on the campus of Arizona State University. The desert fridge is the basis for a “biological process”3 of evaporative cooling that has been interpreted in terms a ritual of outdoor dining in arid climates. The pavilion is intended as a gathering point and a place of interaction for ASU freshmen. The long-term aim of this project is to provide a multiple of these pavilions across the campus that will be the locus of a sequence of dining events over a “dining season”4 during the fall and spring semester. ; This paper describes how the desert fridge principle has been interpreted in the program and construction of the dining pavilion. It explores a sequence of levels by which the structure, via digital production process, provides an educational narrative on sustainability. This communicative quality is portrayed by the building in direct biological terms, through tacit knowledge, perceived phenomena, lexical and mechanical systems. The paper also describes how these digital production process were used in the building’s design and fabrication. These range from an empirical prognosis of evaporative cooling effects, fluid dynamics, heat mapping and solar radiation analysis through to sheet steel laser cutting, folded plate construction and fully associative variable models of standard steel construction. The aim of the pavilion is to create an environment that presents the evaporative cooling message at a multiple of levels that will concentrate the visitor in holistic understanding of the processes imbued within the building.5
keywords Communication; Digital Fabrication; Environment; System
series ACADIA
last changed 2022/06/07 07:51

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2008_101
id ecaade2008_101
authors Jabi, Wassim; Hall, Theodore; Passerini, Katia; Borcea, Cristian; Jones, Quentin
year 2008
title Exporting the Studio Model of Learning
doi https://doi.org/10.52842/conf.ecaade.2008.509
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 509-516
summary We have conducted a series of interdisciplinary studios that partner students in the School of Architecture with peers in the College of Computing Sciences, with two principal goals: to foster creativity in the development of information technology, and conversely, to support creativity through information technology. Our studio project focuses on ubiquitous social computing as a topic of interest to both communities that requires their collaboration to realize a physical implementation. There are administrative as well as cultural hurdles in conducting such a studio. To assess the impact of the pedagogical approach, we employed qualitative observations as well as quantitative survey data. Best results depend on achieving a degree of parity in studio experience across disciplines.
keywords interdisciplinary design studio, ubiquitous social computing, computer supported collaborative work, human computer interaction
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2009_893
id sigradi2009_893
authors Kubicki, Sylvain; Annie Guerriero; Pierre Leclercq; Jean-Claude Bignon
year 2009
title Cooperative design studios in education: Lessons learnt from two experiments
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This article describes experiments of IT-supported cooperation in AEC pedagogical context. The Digital Cooperative Studio (SDC) places students in a situation of distant design cooperation. This experiment allows students to be confronted to a cross-disciplinary approach of the architectural design and leads to the analysis of their own cooperation processes. Two editions of the Digital Cooperative Studio have been carried out in 2007-2008 and 2008-2009. This article presents the lessons learnt from these two experiments.
keywords Virtual Design Studio; Cooperation; Education; AEC (Architecture, Engineering and Construction)
series SIGRADI
email
last changed 2016/03/10 09:54

_id acadia08_142
id acadia08_142
authors Sprecher, Aaron; Paul Kalnitz
year 2008
title Degrees and Switches
doi https://doi.org/10.52842/conf.acadia.2008.142
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 142-151
summary In recent years, evolutionary biology has been the focus of post-Darwinist theories superseding the mere notion of variation with a concept called evolutionary development. The theory of evolutionary development, commonly referred to as evo-devo, follows a series of observations on the nature of organic developments and natural morphologies. Its main contribution rests on an evolutionary model that considers the similarities of genetic material forming organisms and their differences in morphological development due to switching mechanisms between the assigned genes. As observed by the American biologist Sean Carroll, evolution follows regulatory sequences of selector genes that are similar and can be found across various species of insects, plants and animals. ¶ This observation represents a counter-proposal to the old-modern evolutionary theories that looked at processes of adaptation as a function of the emergence of new genes. Evo-devo, on the contrary, recognizes that morphological differences are triggered by recombinatory switches that re-arrange genes in manifold ways to produce numerous characteristics of adaptation. ¶ From a design point of view, evo-devo has tremendous implications because it suggests that generative design protocols may induce sets of similar operations, yet stimulate a wide range of morphologies according to their sequential arrangements and activities. These generative design strategies include, among others, computational methods such as structural shape annealing and object-oriented analysis and design. While these methods are now integrating computing design practices, it is here proposed to review these two computational design methods in the context of three research projects.
keywords Algorithm; Evolution; Genetic; Object-Oriented; Stochastic
series ACADIA
last changed 2022/06/07 07:56

_id cdc2008_359
id cdc2008_359
authors Burke, Anthony
year 2008
title Reframing “intelligence” in computational design environments
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 359-366
summary This paper seeks to establish a set of principals that form an understanding of intelligent systems related to design and architecture, through a review of intelligence as it has been understood over the last 60 years since Alan Turing first asked the question “can machines think?”1 From this review, principals of intelligence can be identified within the neurophysiological and artificial intelligence (AI) communities that provide a foundation for understanding intelligence in computational architecture and design systems. Through critiquing these principals, it is possible to re-frame a productive general theory of intelligent systems that can be applied to specific design processes, while simultaneously distinguishing the goals of design oriented intelligent systems from those goals of general Artificial Intelligence research.
email
last changed 2009/01/07 08:05

_id 5d77
id 5d77
authors Adriane Borda; Neusa Félix; Janice de Freitas Pires; Noélia de Moraes Aguirre.
year 2008
title MODELAGEM GEOMÉTRICA NOS ESTÁGIOS INICIAIS DE APRENDIZAGEM DA PRÁTICA PROJETUAL EM ARQUITETURA. GEOMETRIC MODELING IN THE EARLY STAGES OF LEARNING PRACTICE ARCHITECTURAL DESIGN.
source 12th Iberoamerican Congress of Digital Graphics, SIGRADI, 2008, Havana. SIGRADI, Proceedings of the 12th Iberoamerican Congress of Digital Graphics.. Havana : Ministerio de Educacion Superior, 2008. p. 434-438.
summary This work invests on delimitation of a Geometric Modeling study program directed to students at the initial stages of Architecture. It is considered that the studies promote a qualified control of the form based on recognition of parameters which define it, moreover it also allows the enlargement of the students geometric vocabulary, important to the architectural design activities. In this way, the program advances on the appropriation of new concepts which surround the investigations on architectural design processes, such as the concept of shape grammar. Observing analysis and architectural composition practices based on such concept, contents of geometric modeling which are already being used in the context of post-graduation are identified to be transposed to the graduation context, along with the initial teaching practices of architectural design. The results refer to making the didactic material available, these materials have the objective of building references for the development of design practice which explore the reflection about the processes of creation and composition of architectural form in their geometric aspects.
keywords Architecture, Geometric Modeling, Shape grammar, Teaching/Learning
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:47

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
doi https://doi.org/10.52842/conf.acadia.2008.066
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2008_040
id ecaade2008_040
authors Baerlecken, Daniel; Kobiella, Olaf
year 2008
title Math Objects
doi https://doi.org/10.52842/conf.ecaade.2008.677
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 677-684
summary The paper discusses mathematical form generation as an academic methodology to develop new approaches to architectural design. The academic design studio ‘Math objects’ investigates the relationship between complex 3d-surfaces and mathematics in order to expand the formal repertoire of architecture. It claims that the process of form generation can be seen as an autonomous entity, which is independent from an overall strategy or any a priori meaning. Architecture has always originated from a concept, eventually progressing towards a certain form. This methodology has been reversed. The paper discusses two studios undertaken in the last year, led by Daniel Baerlecken and Olaf Kobiella at the TU Braunschweig, Germany.
keywords Generative design, design methodology: architectural design teaching, parametric form generation, NURBS-modelling
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac20076301
id ijac20076301
authors Barros, Diana Rodriguez; Castane, Dora; Stipech, Alfredo
year 2008
title Hypermedia urban models in virtual environments: Case studies of central areas of Argentine cities
source International Journal of Architectural Computing vol. 6 - no. 3, pp. 221-241
summary The virtual models of urban fragments recreate environments of simulation and analysis with a great degree of realism. This paper addresses a review of case studies in which Argentine researchers from three different university centres have worked jointly. We examine spatial databases from a representational and communicational perspective as virtual 3D, walkthrough, and interconnected urban models. Our aim is to explore, recognise and analyse advances in this direction, and to apply them to the development of virtual models of central areas in the Argentine cities of Buenos Aires, Rosario, Santa Fe and Mar del Plata. We present the methodology used to analyse the design, production and management processes of the virtual model as well as the results of our research. We acknowledge that these models are consistent non-traditional instruments of analysis which complement the knowledge of the city and facilitate spatial comprehension. Finally, we review predominant tendencies.
series journal
last changed 2008/10/14 14:00

_id acadia08_102
id acadia08_102
authors Beaman, Michael
year 2008
title Bio-complexity: Instructing with Relational Generatives
doi https://doi.org/10.52842/conf.acadia.2008.102
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 102-109
summary This paper will discuss the use of complex systems in analyzing biological precedence of self-organizing, self-stabilizing and emergent phenomenon. The use of complex biological systems will be used to define relational models that avoid issues of scale. Scalability (the ability to traverse scales) will be presented as a relational construct through the use of scope, not scale. The analysis of biological formation and organization as a relational model defined by scope will be presented as a generative in forming design strategies and solutions and will be illustrated in four undergraduate-level architecture studio projects.
keywords Complexity; Generative; Scripting; Self-Organization; Simulation
series ACADIA
last changed 2022/06/07 07:54

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac20076104
id ijac20076104
authors Benoudjit, Mohamed Amine; Coates, Paul S.
year 2008
title Artificial networks for spatial analysis
source International Journal of Architectural Computing vol. 6 - no. 1, pp. 59-78
summary This paper tests digital representation techniques which can be used by artificial neural networks in a computer-aided design (CAD) environment to analyze and classify architectural spaces. We developed two techniques for encoding volumetric data: vertex representation and feature space representation, as input for artificial neural networks. We tested how two different kinds of artificial neural networks, perceptron networks and self-organizing maps, could recognize given shapes in these representational formats. We have found that a one-layer perceptron can be used to classify shapes even when presented with input vectors composed of real numbers. These spatial representation techniques provide a method for using ANNs for architectural purposes.
series journal
last changed 2008/06/18 08:12

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_34319 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002