CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cdc2008_065
id cdc2008_065
authors Celento, David and Del Harrow
year 2008
title CeramiSKIN: Biophilic Topological Potentials for Microscopic and Macroscopic Data in Ceramic Cladding
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 65-76
summary CeramiSKIN is an inter-disciplinary investigation examining recursive patterns found in organic matter. Through the use of digital capture and translation techniques, these biophilic systems may serve as topological generators for structural and ornamental consequences well-suited to mass-customizable ceramic cladding systems for architecture. Digital information is acquired through laser scanning and confocal electron microscopy, then deformed using particle physics engines and parametric transformations to create a range of effects promulgated through digital fabrication techniques. This inquiry is primarily concerned with two questions: Is it possible that natural systems may be digitally captured and translated into biophilic structural forms and/or ornamental effects that may foster beneficial responses in humans? / Since natural orders eschew rigid manifold geometries in favor of compound plastic shapes, is it possible to fabricate mass-customized, large-scale biophilic ceramic cladding from organic digital data?
keywords Ceramic cladding systems, biophilia in architecture, digital design, digital fabrication, masscustomization
email
last changed 2009/01/07 08:05

_id jemtrud02_paper_eaea07
id jemtrud02_paper_eaea07
authors Jemtrud, Michael
year 2008
title Emerging Technologies in a Participatory Design Studio_between Carleton University and Pennsylvania State University
source Proceedings of the 8th European Architectural Endoscopy Association Conference
summary As a preliminary report on a proof-of-concept design studio conducted during the spring semester of 2007 between the Carleton Immersive Media Studio (CIMS) at Carleton University in Ottawa and the Immersive Environment Laboratory (IEL) at Pennsylvania State University, the paper first describes the implementation of this network-centric collaborative design platform. The report articulates the “staging” of the conditions of possibility for a dynamic interplay between technological mediation and the reality of making, then compares the use of high bandwidth technology with customized symmetrical toolsets in the tele-collaborative educational environment, versus commercial toolsets deployed over moderate bandwidth connections. In each setting, the collaborative environment is assessed according to issues encountered by students and design outcomes. The effectiveness of the digitally mediated collaborative studio is also gauged in terms of student reaction to the learning process via feedback surveys and questionnaires.
keywords design, collaboration, tele-presence, visualization, broadband
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id 5d77
id 5d77
authors Adriane Borda; Neusa Félix; Janice de Freitas Pires; Noélia de Moraes Aguirre.
year 2008
title MODELAGEM GEOMÉTRICA NOS ESTÁGIOS INICIAIS DE APRENDIZAGEM DA PRÁTICA PROJETUAL EM ARQUITETURA. GEOMETRIC MODELING IN THE EARLY STAGES OF LEARNING PRACTICE ARCHITECTURAL DESIGN.
source 12th Iberoamerican Congress of Digital Graphics, SIGRADI, 2008, Havana. SIGRADI, Proceedings of the 12th Iberoamerican Congress of Digital Graphics.. Havana : Ministerio de Educacion Superior, 2008. p. 434-438.
summary This work invests on delimitation of a Geometric Modeling study program directed to students at the initial stages of Architecture. It is considered that the studies promote a qualified control of the form based on recognition of parameters which define it, moreover it also allows the enlargement of the students geometric vocabulary, important to the architectural design activities. In this way, the program advances on the appropriation of new concepts which surround the investigations on architectural design processes, such as the concept of shape grammar. Observing analysis and architectural composition practices based on such concept, contents of geometric modeling which are already being used in the context of post-graduation are identified to be transposed to the graduation context, along with the initial teaching practices of architectural design. The results refer to making the didactic material available, these materials have the objective of building references for the development of design practice which explore the reflection about the processes of creation and composition of architectural form in their geometric aspects.
keywords Architecture, Geometric Modeling, Shape grammar, Teaching/Learning
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:47

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id cdc2008_377
id cdc2008_377
authors Conrad, Erik
year 2008
title Rethinking the Space of Intelligent Environments
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 377-382
summary Technologies are not mere exterior aids but interior changes of consciousness that shape the way the world is experienced. As we enter the age of ubiquitous computing, where computers are worn, carried or embedded into the environment, we must be careful that the ideology the technology embodies is not blindly incorporated into the environment as well. As disciplines, engineering and computer science make implicit assumptions about the world that conflict with traditional modes of cultural production. Space is commonly understood to be the void left behind when no objects are present. Unfortunately, once we see space in this way, we are unable to understand the role it plays in our everyday experience. In this paper, I argue that with the realization of the vision of ubiquitous computing, the fields of computer science and engineering reify the dominance of abstract space in real space. A new approach to the design of computing systems is necessary to reembody space. The social nature of the interface allows us to situate it within Henrí Lefebvre’s notions of space, providing new tools for thinking about how computing practice engages space as well as opening avenues to rematerialize the environment through embodied interaction.
email
last changed 2009/01/07 08:05

_id cdc2008_111
id cdc2008_111
authors Dounas, Theodore
year 2008
title Algebras, Geometries and Algorithms, Or How Architecture fought the Law and the Law Won
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 111-114
summary An Architect is required to deal quite often with a restrictive piece of Building Code during his/her practice, especially in traditional and hence protected environments. The paper examines the algorithmic nature of such a Building Code and in particular the President's Decree governing the design and architecture of traditional housing in the Old Town, “Ano Poli”, in Thessaloniki Greece. The nature of the constraints and descriptions the Decree contains is algorithmic, which means that the descriptions of the constraints is procedural with a specific start and a specific finish for a house design. The problem with such descriptions in a Law is that, although an architect can develop his/her own interpretations of the traditional language of the area, or even be able to trace his/her designs using shape grammars derived from traditional buildings preserved until today, the final result cannot be approved for a building permit since it does not comply with the Presidential Decree. We suggest that the nature of such legislation should be algebraic in nature and not algorithmic, since algebras allow an amount of freedom in development of architectural language while also permitting the restriction of scale, height and so on. This coupling of architectural design freedom and effective restriction on metrics of new buildings contained in algebraic systems can be shown to be much more effective than the established algorithmic system. The Decree's content comprises of regulations concerning the volume, form and use of new buildings in the protected and conserved built environment of “Ano Poli” in Thessaloniki.
last changed 2009/01/07 08:05

_id sigradi2008_089
id sigradi2008_089
authors Godoi,Giovana; Gabriela Celani
year 2008
title A study about facades from historical brazilian town using shape grammar
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Shape grammars have been used in architecture for analysis and synthesis - in the first case, mainly for the characterization of styles and in the later for the generation of novel compositions. The present research proposes the use of shape grammars for establishing guidelines for the requalification of historical areas that have lost their original characteristics due to improper renovations. The use of shape grammars proposed here starts with the definition of a set of rules for characterizing the original style of an area. Based on these rules, the main characteristics of the area are confirmed, such as siting, proportions between walls and openings in the façades, overall dimensions constraints, and so on. Next, the rules of the grammar are transformed, to allow the use of contemporary building materials, as well as the incorporation of contemporary living styles in the new design. Rules must take into account two cases: original buildings that have been inadequately transformed, and buildings that have been completely torn down and will replace been completely replaced by new constructions. Both cases need to be harmonious with the remaining original buildings, however without simply copying the existing style. In both cases, rules have been used to establish the guidelines for the renovations, which resulted in modern urban environments that resemble the original historical sites in terms of spatial relations and proportions. They also create an appropriate environment for the observations of the preserved original buildings, which would otherwise look like aliens in a completely transformed neighborhood. The latter case is very common in most Brazilian cities, especially in the case of São Paulo, where houses from the late 1800´s and early 1900´s are flanked by high rise apartment buildings. In order to develop and test the proposed method, a study will be carried out in a small Brazilian town called Monte Alegre do Sul. The town was chosen because its original urban morphology, developed in the XIXth century, is still relatively well preserved, although part of the original façades have been transformed. The objective of the research is to develop a shape grammar to set guidelines for the re-adaptation of the already renovated façades and reconstruction of other ones in Monte Alegre do Sul.
keywords Shape grammar, generative design systems
series SIGRADI
email
last changed 2016/03/10 09:52

_id ecaade2008_079
id ecaade2008_079
authors Hemmerling, Marco; Knaack, Ulrich; Schulz, Jens-Uwe
year 2008
title Complexity in Digital Architectural Design
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 85-90
doi https://doi.org/10.52842/conf.ecaade.2008.085
summary The association of complexity and geometry was the starting point for an academic project at the chair of Computer Aided Design in Detmold. The students were asked to analyze a complex structure - taken from nature, art, technology or society - regarding the underlying geometrical rules and principles. The translation of these abstract geometric principles (logarithmic spiral, polyhedron, rotational solids, mesh-work, double helix…) into a three-dimensional structure was then realized in Rhinoceros. The 3D-modeling was followed by a transformation- and optimization-process of the initial shape by using the evolutionary principles of mutation and selection. The set-up for these variations followed predefined rules and principles for the manipulation of the original structure.
keywords Geometry, Complexity, Computer Aided Design, Architecture
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2008_142
id ecaade2008_142
authors Hoog, Jochen; Wolff-Plottegg, Manfred
year 2008
title Real Virtualities - Architecture 2.0
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 817-822
doi https://doi.org/10.52842/conf.ecaade.2008.817
summary The Institute of Architecture and Design, TU Vienna has bought a virtual island in Second Life (SL) in order to use it in a design course (5 ECTS). The goal was to introduce students to new ways in which computers in a web based network like SL can be used to generate designs by using end user scripting within a virtual 3D environment. After a short introduction into the basics of SL and to the rules and conditions of multi-user virtual environments (MUVE’s) the students worked within that kind of spatial software as a place and as hyper media. The main focus of this paper is to stress and to describe the differences of the student’s results compared to common architectural design courses.
keywords Algorithmic architecture, Second Life, virtual space design, learning platform
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2008_139
id ecaade2008_139
authors Kepczynska-Walczak, Anetta
year 2008
title Contemporary Renaissance Architect - Yet Architect?
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 445-450
doi https://doi.org/10.52842/conf.ecaade.2008.445
summary This paper is a contribution into domain of Generative Design and Digital Aids to Design Creativity. The outcomes of two workshops for the fourth and fifth year students of architecture are presented. The workshops allowed to draw particularly interesting lessons leading, in consequence, to more general reflections on questions such as the limits in design creativity versus unexpected outcomes calculated by a computer, the gap between boundless possibilities offered by digital design tools and real practice in building construction. And finally, how advanced research results can be incorporated in teaching. This is particularly important, as nowadays students, to become successful architects in the future, not only will have to be good in using CAAD software but also in programming and software development.
keywords Generative Design, Digital Aids to Design Creativity, CAAD Curriculum
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2008_009
id ecaade2008_009
authors Lyon , Eduardo R.
year 2008
title Knowledge Based Design and Digital Manufacturing:
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 625-632
doi https://doi.org/10.52842/conf.ecaade.2008.625
summary This research explores new ways to integrate manufacturing knowledge in to design phases. Through the use of design for manufacturing (DfM) concept, and looking at relations between its potential application in component design and its implementation using digital manufacturing technologies, the author implemented a DfM model that varies from previous models by incorporated learning in the process. This process was based on the incremental development and refinement of design heuristics and metrics. The DfM model developed in this research is a process model to be implemented as a framework within educational settings. The final purpose is to provide better foundational constructs for design education and to improve teaching approaches that integrate design and manufacturing.
keywords Design Computing, Design for manufacturing, Knowledge Based Design, Digital Manufacturing
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2008_58_session6a_479
id caadria2008_58_session6a_479
authors Matsushima, Shiro; Rie Takenaka, Daisuke Sasaki
year 2008
title Study on Application of Motion Capture to Design Methodology for Generating New Geometry: Coupling Computer and Human Performance Using Motion Capture Technology for New Architectural Form and Space
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 479-486
doi https://doi.org/10.52842/conf.caadria.2008.479
summary This research aims to develop fundamental design methodologies for human space and product design by motion capture of human activity. It is intended to generate new geometry using a motion capture system as design input device and then to develop it to design interior space and products such as furniture from data extracted from human motion. In order to produce a ubiquitous and comfortable environment, performance modeling focusing on the relationships between space and physical motion is needed. Making an object of complex shape is thought to be a new application of motion capture technology. This research proves that the numeric data of body actions can be transferred and developed to object shapes.
keywords Motion Capture: Inclusive Design; Ergonomics; Design Process; New Geometry
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2008_23_session3a_185
id caadria2008_23_session3a_185
authors Merrick, Kathryn; Mary Lou Maher, Rob Saunders
year 2008
title Achieving adaptable behaviour in intelligent rooms using curious supervised learning agents
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 185-192
doi https://doi.org/10.52842/conf.caadria.2008.185
summary Multiple devices, both hardware and software, may come and go at any time in a given room. Software controlling the behaviour of these devices must be able to adapt to encompass new devices or the removal of existing devices. This paper presents a model for curious, supervised learning agents that address the issue of adaptability at a behavioural level in an intelligent room. Curious, supervised learning agents comprise a curiosity module and a supervised learning algorithm. The curiosity module identifies interesting devices on which to focus the agent’s learning. The supervised learning component realises behaviours by observing, modelling and mimicking human actions. Our framework is demonstrated in a virtual meeting room in Second Life. We show that the curious learning agent can adapt its behaviour to identify new learning goals in response to new devices and activities. 
keywords Curiosity, Supervised learning, Agent, Intelligent room
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2008_058
id ecaade2008_058
authors Niblock, Chantelle; Hanna, Raid
year 2008
title An Investigation of the Influence of Using the Computer on Cognitive Design Actions:
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 693-700
doi https://doi.org/10.52842/conf.ecaade.2008.693
summary This paper documents a research pilot study; it is a comparative investigation between an expert designer and a novice designer. The study used protocol analysis to examine design cognitive actions whilst using 3D digital media during the conceptual stage of design. The empirical study found novice designers capable of managing a design process of complex objects due to the increase in their contribution of design strategies to the overall process. The possible reason for this may be due to using free-form modelling with accuracy aids found in computing facilities. This provides evidence to suggest automated computing should be encouraged within the pedagogical framework of architectural design.
keywords Protocol Analysis, Design cognition, Complexity Management, Design Process
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2008_111
id ecaade2008_111
authors Theodoros, Dounas
year 2008
title Dynamic Algebras and Grammars
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 429-436
doi https://doi.org/10.52842/conf.ecaade.2008.429
summary The research presented in the paper explores the creation of custom shape grammars with animation tools, either as learning or educational tool or for the purposes of architectural design. Standard shape grammars contain an initial shape or design and one or more transformation rules. The designer just applies the rules in the initial design or has to chose which rule to apply. Dynamic shape grammars on the other hand use animation tools to produce dynamic rules of transformation, or even dynamic – parametric initial shapes on which to apply the rules on. The dynamic state of the rules in our system allows the designer to change the rules during designing without having to abandon a core structural idea or concept. Furthermore the implementation with an animation tool allows the design system to be form-independent and express the underlying structure of an architectural idea with non-graphical connections like parent and child relationships, or other deformation rules.It can be shown that in a computation context dynamic shape grammars are actually groups of standard shape grammars where the grammars in the group share the classification of the transformation rules they contain. The system that we present allows the designer to change between the grammars in one group in a transparent way without expressing the grammar formally but by only manipulating simple objects inside the animation software package.
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2008_2_session1a_022
id caadria2008_2_session1a_022
authors Theodoros, Dounas; Kotsiopoulos M. Anastasios
year 2008
title Dynamic (Shape) Grammars
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 22-28
doi https://doi.org/10.52842/conf.caadria.2008.022
summary The research presented in the paper explores the creation of custom shape grammars with animation tools, either as learning or educational tool or for the purposes of architectural design. Standard shape grammars contain an initial shape or design and one or more transformation rules. In a simple scenario the designer just applies the rules in the initial design or in a complicated scenario has to choose which rule to apply. Dynamic shape grammars on the other hand use animation tools to produce dynamic rules of transformation, or even dynamic – parametric initial shapes on which to apply the rules on. The dynamic state of the rules in our system allows the designer to change the rules during designing without having to abandon a core idea or concept. Furthermore the implementation with an animation tool allows the design system to be form-independent and express the underlying structure of an architectural idea with non-graphical connections like parent and child relationships, or other deformation rules. It can be shown that in a computation context dynamic shape grammars are actually groups of standard shape grammars where the grammars in the group share the classification of the transformation rules they contain. The system that we present allows the designer to change between the grammars in one group in a transparent way without expressing the grammar formally but by only manipulating simple objects inside the animation software package. This transparency focuses the effort of the user in simply design and keeping track of the formal declarations of shape grammars while the multiple dynamic grammars remove the obstacle of conforming to a single set of rules. The benefits of this effort can be especially seen in actual architectural design where the focus is in developing a concept idea and not strictly adhering to the rules.
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2008_60_session6a_494
id caadria2008_60_session6a_494
authors Wang, Xiangyu; Rui Chen
year 2008
title The shape of sound: Using mixed REALITIES to bridge music and architecture
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 494-500
doi https://doi.org/10.52842/conf.caadria.2008.494
summary There are structural and aesthetic components in architectural design that mirror the foundational components of musical compositions. In recent years, both architects and musicians have taken advantage of the advances in technology, allowing for new designs and compositions that would not be possible without computers. Mixed Realities, the merging of different reality worlds to create new environments where objects from these reality worlds can interact with each other in a real-time manner, is envisaged to become such technological platform bridging between space and sound. This paper discusses the interfaces of such bridging that can occur via Mixed Realities, the associated issues and possible outcomes of a Mixed Realities system that would allow for collaboration between architects and musicians.
keywords Mixed Realities, Collaboration, Architecture, Music, 3D Visualizations
series CAADRIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_979581 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002