CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 425

_id acadia08_192
id acadia08_192
authors Lee, Charles
year 2008
title The Thermal Organism And Architecture
doi https://doi.org/10.52842/conf.acadia.2008.192
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 192-199
summary Throughout the history of architectural discourse the concept of metabolic function in a building and a buildings relationship to its creators is expressed by keen designers who understand the subtle linkage. Organistic homeostasis is a biological function found in all mammals including humans. The interior generation of heat classifies man as endothermic. Endothermic heat generation allows for a very controlled equilibrium and is a characteristic of more complex organisms. The body has produced highly evolved surface systems to help efficiently manage the flow of heat energy in and out of the body. I suggest building envelopes represent the human being projecting itself outwards in a prosthetic extension of the skin. Inherent in this projection are the same demands of envelope put forth in the body. In my research of anatomy I have found one system that has evolved to help facilitate endothermic heat regulation in mammals at the skin level, which is hair. How does hair transcribe into architecture? An analysis into the function of hair and its adaptable morphologies is studied. Hair is a thermal regulating system, its building equivalent are forms of thermal insulation and radiant barriers. Hairs goal is homeostatic equilibrium which has its architectural counterpoint known as the balance point. Hair is an adjustable system that mitigates between internal and external heat loading which is the goal of a building envelope. In conclusion the paper explores these issues and more in new building systems and design tactics that originate from the function of hair.
keywords Biology; Biomimetics; Design; Environment; Responsive
series ACADIA
last changed 2022/06/07 07:51

_id caadria2008_58_session6a_479
id caadria2008_58_session6a_479
authors Matsushima, Shiro; Rie Takenaka, Daisuke Sasaki
year 2008
title Study on Application of Motion Capture to Design Methodology for Generating New Geometry: Coupling Computer and Human Performance Using Motion Capture Technology for New Architectural Form and Space
doi https://doi.org/10.52842/conf.caadria.2008.479
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 479-486
summary This research aims to develop fundamental design methodologies for human space and product design by motion capture of human activity. It is intended to generate new geometry using a motion capture system as design input device and then to develop it to design interior space and products such as furniture from data extracted from human motion. In order to produce a ubiquitous and comfortable environment, performance modeling focusing on the relationships between space and physical motion is needed. Making an object of complex shape is thought to be a new application of motion capture technology. This research proves that the numeric data of body actions can be transferred and developed to object shapes.
keywords Motion Capture: Inclusive Design; Ergonomics; Design Process; New Geometry
series CAADRIA
email
last changed 2022/06/07 07:58

_id cdc2008_267
id cdc2008_267
authors Rojas, Francisca M.; Kristian Kloeckl and Carlo Ratti
year 2008
title Dynamic City: Investigations into the sensing, analysis and application of real-time, location-based data
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 267-278
summary Over the past decade, our cities have been blanketed with digital bits. Unlike the old electromagnetic, unidirectional waves, these bits are bidirectional – they communicate – and are thus tied to human activities. Our hypothesis is that by analyzing these bits we can gain an augmented, fine-grained understanding of how the city functions - socially, economically and yes, even psychologically. Some preliminary results from different projects recently carried out at MIT senseable city lab are discussed below.
email
last changed 2009/01/07 08:05

_id ijac20086401
id ijac20086401
authors Maleki, Maryam M.; Woodbury, Robert F.
year 2008
title Reinterpreting Rasmi Domes with Geometric Constraints:A Case of Goal-seeking in Parametric Systems
source International Journal of Architectural Computing vol. 6 - no. 4, 375-395
summary Geometry has long been a generator of architecture. In traditional Persian architecture, Rasmi domes project a drawing onto a predefined 3D geometry. In fact, the word 'rasmi' and the verb for drawing in Persian have the same linguistic root. Projection is readily done in manual drawings or conventional CAD programs. From a constraint perspective, the dome is constrained by the drawing and the 3D geometry. If the latter constraint is replaced by invariance of distance on the original drawing, a class of domes results, but members of this class cannot be computed conventionally. Class members are developable from a planar layout of triangles, which is, in turn, generated by a simple drawing rule. This yields a parametric structure of four parameters. Three determine the initial planar diagram. One determines configuration. Further, domes in the class are mechanisms: they are not fully specified by the constraints and parameters. We develop the geometric constraints representing the location of the defining points of a dome and present a goal-seeking algorithm to solve the constraints within a propagation-based parametric modeling system.
series journal
last changed 2009/03/03 07:48

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2008_24_session3a_193
id caadria2008_24_session3a_193
authors Biswas, Tajin; Tsung-Hsien Wang, Ramesh Krishnamurti
year 2008
title Integrating sustainable building rating systems with building information models
doi https://doi.org/10.52842/conf.caadria.2008.193
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 193-200
summary The transition from conventional to sustainable building depends on a number of factors— technological, environmental, economic and social. From a computer-aided design perspective, the first two are perhaps the most significant. We are working on a project with an emphasis on developing tools, to evaluate environmental consequences for design decision-making. Our current thrust is given to reducing energy usage as well as carbon emissions in buildings.
keywords Sustainable building rating system, Building information model
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2008_9_session1b_075
id caadria2008_9_session1b_075
authors Chien, Sheng-Fen
year 2008
title Probing elders’ needs for smart technologies in the domestic environment
doi https://doi.org/10.52842/conf.caadria.2008.075
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 75-80
summary This paper presents an initial investigation into developing smart homes for the elderly. Smart homes refer to domestic living environments that equipped with “sensible” and “responsive” facilities, which employ smart technologies, to provide occupants a sound and comfortable living. Designers and sociologists have observed reluctances and even rejections to these technologies from the elderly. A Cultural Probes study shows that the elderly welcome new technologies but reject robotic companionships. In addition, a questionnaire survey concludes that smart technologies for home safety and security, energy conservation and usage monitoring, as well as health care and maintenance, are desirable.
keywords Smart home; the elderly; cultural probe; questionnaire; survey
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2016_027
id ascaad2016_027
authors Cocho-Bermejo, Ana
year 2016
title Time in Adaptable Architecture - Deployable emergency intelligent membrane
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 249-258
summary The term "Parametricism" widespread mainly by Patrick Schumacher (Schumacher, 2008) is worthy of study. Developing the concept of Human Oriented Parametric Architecture, the need of implementing time as the lost parameter in current adaptive design techniques will be discussed. Morphogenetic processes ideas will be discussed through the principle of an adaptable membrane as a case study. A model implementing a unique Arduino[i] on the façade will control its patterns performance through an Artificial Neural Network that will understand the kind of scenario the building is in, activating a Genetic Algorithm that will optimize the insulation performance of the ETFE pillows. The system will work with a global behavior for façade pattern performance and with a local one for each pillow, giving the option of individual sun-shading control. Machine learning implementation will give the façade the possibility to learn from the efficacy of its decisions through time, eliminating the need of a general on-off behavior.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id ddss2008-21
id ddss2008-21
authors Horeni, Oliver; T.A. Arentze, H.J.P. Timmermans, and B.G.C. Dellaert
year 2008
title INTERVIEW TECHNIQUES FOR MEASURINGINDIVIDUALS’ MENTAL REPRESENTATIONSSPACE-TIME CHOICESAn outline of three IT-based survey methods
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary A better exploration of human decision making is a necessary condition to understand individual activity-travel choices. With the advent of mental model theory a conceptual framework of individuals’ causal knowledge of the environment and its links to the behavioural choice outcome was available. Accordingly, interview techniques had been developed in order to elicit mental representations from individuals’ mind. Although these techniques delivered reliable and useful results, it turned out quickly, that they could not be applied to large-scale surveys. Hence, this paper will report on the development of three IT-based interview techniques, which are promising avenues to measure mental representations in an efficient and flexible way.
keywords Activity-travel choice, Mental representations, Electronic surveying
series DDSS
last changed 2008/09/01 17:06

_id caadria2008_25_session3b_205
id caadria2008_25_session3b_205
authors Kim, Miyun; Jinwon Choi
year 2008
title Visualizing Environmental Information on The Geo-Spatial Urban Map
doi https://doi.org/10.52842/conf.caadria.2008.205
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 205-212
summary Environmental and residential destruction caused by urbanization and land development raises a serious issue. In addition, advanced technology has quickly changed the structure of cities, followed by revolutionary changes are growing faster these days and this requires us to turn our attention into developing a symbiotic eco-city, which will make it possible for further sustainable development. In this regard, it grows much more important to manage a flood of information from various intelligent devices and systems for environmental maintenance. The structure and meaning of modern info-oriented cities have changed their focus from tangible materials and resources, or energy into intangible information and knowledge. Now it has become the most important on how to manage and utilize a vast amount of information in order to strengthen the competitiveness and improve the life quality. This study finds methods for an effective city management and planning, or visualization of information for ecology-friendly education in order to provide a comfortable city life and develop a cleaner city, by efficiently managing information on several ecology protection areas and their sauces of pollution in the centre of a city. The goal is to help city managers or planners to be better aware of environmental information related to their work.
keywords Ecology-friendly city; environmental information; geo-spatial urban map; classification, visualization
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2008_081
id ecaade2008_081
authors LaBelle, Guillaum; Nembrini, Julien; Huang , Jeffrey
year 2008
title Simulation-Driven Design System
doi https://doi.org/10.52842/conf.ecaade.2008.469
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 469-476
summary This paper presents a design process efficiently involving parametric design, realistic physical simulation and rapid-prototyping fabrication for contextual shape adaptation. This case study focuses on lighting simulation for the specific problem of solar energy harvesting. Inspired by the phototropic mechanism, the ability of plants to grow according to the availability of light, an innovative design technique is defined, taking its root in the morphogenetic design school [Hensel, 2004].
keywords Parametric,Simulation, Generative Design, CAD, Phototropism
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia08_324
id acadia08_324
authors Narahara, Taro
year 2008
title New Methodologies in Architectural Design inspired by Self-Organization
doi https://doi.org/10.52842/conf.acadia.2008.324
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 324-331
summary This paper introduces a potential application of construction systems seen in biological systems to overcome various shortcomings in human architecture. Unlike human constructions, some social insects can produce habitable structures with simple rules without predetermined blueprints or central leaders to gain more adaptability. Active application of logics from self-organizing systems can possibly enhance our conventional centralized methods by designing artificial distributed systems. A conceptual case study is presented that involves a notion of the collective construction.
keywords Algorithm; Construction; Flocking; Genetic; Self-Organization
series ACADIA
last changed 2022/06/07 07:59

_id ecaade2008_074
id ecaade2008_074
authors Pauwels, Pieter; Verstraeten, Ruben; Meeus, Wim; De Meyer, Ronald; Van Campenhout, Jan
year 2008
title Industry Foundation Classes: A Space-Based Model Scheme?
doi https://doi.org/10.52842/conf.ecaade.2008.117
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 117-124
summary This paper illustrates our findings concerning space based design methodologies and interoperability issues for today’s Building Information Modeling (BIM) environments. A method is elaborated which enables building designers to perform an automated energy use analysis, based on an Industry Foundation Classes (IFC) model derived from a commercial BIM environment, in this case Autodesk Revit 9.1. A prototype application was built, which evaluates the building model as well as vendor-neutral exchange mechanisms, in accordance with the Flemish Energy Performance Regulation (EPR) standard. Several issues regarding the need for space-based building models are identified and algorithms are developed to overcome possible shortcomings.
keywords IFC, BIM, Revit, EPBD
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2008_190
id ecaade2008_190
authors Russell, Peter; Elger, Dietrich
year 2008
title The Meaning of BIM
doi https://doi.org/10.52842/conf.ecaade.2008.531
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 531-536
summary The paper is a position paper, not a report about a research project. It concerns the paradigm-shift that is taking place in the CAAD software and its implications for the business of architecture and more importantly, for the education of future members of the profession. Twenty years ago the use of CAAD software as a replacement for hand drafting was starting. Since then the transformation is complete: hardly a final project in the universities is drawn by hand. Currently, we are witnessing a second paradigm shift and its name is BIM. The meaning of BIM is rooted in two significant differences to current CAAD software and this will have implications for teaching and practicing architecture. The first difference is the way the software structures information in the CAAD file. The standard way to save CAAD information was to organise simple geometric objects according to membership in groups and to sort them according to a layer-metaphor, which primarily controlled the visibility of the geometric elements. Three-dimensional modelling is/was nothing more than the same structure with a more complex geometry. BIM software changes this structure by storing classes of geometries and then to store the specific values of individual geometries according to factors that can be determined by external or internal logical factors. The implication for architects is that we have the chance to be the people in control of the building information model, so long as we invest the time and energy to fully understand what is happening to the building information during the planning process. If we ignore this, the real danger exists that the last control of the building’s final configuration will be usurped. As educators we are currently teaching students that will be leaving the schools in 2012 and beyond. By then, the paradigm-shift will be in full motion and so it behoves us to consider which skill sets we want the next generation of architects to possess. This means not just teaching students about how to use particular BIM software or how to program a certain parametric/genetic algorithm in a form-finding process. We need to teach our students to take the leadership in building information management and that means understanding and controlling how the building information flows, how the methodologies that are used by the consulting engineers affect our building models, and knowing what kind of logical inconsistencies (internal or external) can threaten the design intention.
keywords Building Information Modelling, Digital Curriculum, Architectural Pedagogy
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2008_094
id ecaade2008_094
authors Theßeling, Frank; Schlüter, Arno; Leibundgut, Hansjürg
year 2008
title Energy and Exergy Performance as Parameters in Architectural Design Sketching -a Case Study
doi https://doi.org/10.52842/conf.ecaade.2008.477
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 477-482
summary Buildings account for 40% of the worldwide CO2 emissions. These emissions are directly related to their energy consumption. 80% of the design decisions impacting energy consumption are made during the first 20 % of the design process and therefore address the architect. Necessary decisions do not only concern building geometry but also materialization and building service systems. Choices in either of these fields significantly influence the future energy consumption of the building. Therefore it is necessary to support the architects’ decision-making. From the first sketch on, the evaluation of energy performance needs to be incorporated into the design process. This paper shows a method and results which where produced in a case study at the ETH Zurich by using a special tool in early design phases for energy and exergy analyses.
keywords energy, exergy, early design phases, performance, sketching
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia05_200
id acadia05_200
authors Tsou, J.-Y., Chan Yi Lee, Mak Kwok Pui, Ru Xu Du, Liang Jian, Yeung Kim
year 2005
title Applying Scientific Simulation to Integrate Thermoelectric Conductor Module into Architectural Design – Smart Wall for Thermal Comfort
doi https://doi.org/10.52842/conf.acadia.2005.200
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 200-210
summary This paper presents the innovative architectural design concept, which is to integrate the new material and technology into the building design to achieve the thermal comfort and at the same time reduce the energy consumption of the building by making use of the renewable energy, including solar and wind energy. The system is developed based on the idea of regional thermal comfort in building. The advantage of the system is the environmental friendly approach, costless operation, reliability, flexibility, scalability and adaptability for the integration to the building design. With the design concept, we tried to do two application designs in two virtual sites. One is a badminton court for the 2008 Beijing Olympic Games and the other is a cooling pond in a shopping mall. We will introduce how computational simulation can contribute to the prediction of the performance of the design. We will also discuss how the computation simulation can help in the design optimization process. Through the development of the new design integration of the material to the building, we would like to feedback to the material industry to encourage further collaboration and development in the material enhancement, so that both industries and the society can benefit from the advancement.
series ACADIA
email
last changed 2022/06/07 07:57

_id sigradi2008_180
id sigradi2008_180
authors Vincent, Charles
year 2008
title Gulliver in the land of Generative Design
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The current trend in architectural design towards architectural computing has been treated both from a philosophical standing point and as an operational systems’ problem, in a quest for explications which could at last break ground for a more broad development and adoption of design tools. As Kostas Terzidis (2007) puts it, the intuitiveness that architects have put on so high a pedestal seems to be the central issue to be dealt with by both views. There seems to be no apparent shortcut toward the reconciliation between traditional practice and new media and most certainly it is not only a problem of interface design, but one of design method clarification and reinterpretation of those methods into computing systems. Furthermore, there’s no doubt left as to whether computing systems can generate such new patterns as to impact our own understanding of architecture. But even if computer algorithms can make possible the exploration of abstract alternatives to an abstract initial idea, as in Mathematica and Processing, the issue of relating abstract and geometric representations of human centered architecture lays in the hands of architects, programmers or, better yet, architect-programmers. What seems now to be the relevant change is that architectural design might escape from the traditional sequence embedded in the need – program – design iterations – solution timeline, substituted by a web of interactions among differing experimental paths, in which even the identification of needs is to be informed by computing. It is interesting to note that the computational approach to architectural design has been praised for the formal fluidity of bubbles and Bezier shapes it entails and for the overcoming of functionalist and serialization typical of modern architecture. That approach betrays a high degree of canonic fascination with the tools of the trade and very little connection to the day to day chores of building design. On the other hand, shall our new tools and toys open up new ways of thinking and designing our built landscape? What educational issues surface if we are to foster wider use of the existing technologies and simultaneously address the need to overtake mass construction? Is mass customization the answer for the dead end modern architecture has led us to? Can we let go the humanist approach begun in Renascence and culminated in Modernism or shall we review that approach in view of algorithmic architecture? Let us step back in time to 1726 when Swift’s ‘Travels into Several Remote Nations of the World by Lemuel Gulliver’ was first published. In Swift’s fierce critic of what seemed to him the most outrageous ideas, he conceived a strange machine devised to automatically write books and poetry, in much the same generative fashion that now, three centuries later, we begin to cherish. “Every one knew how laborious the usual method is of attaining to arts and sciences; whereas by his contrivance, the most ignorant person at a reasonable charge, and with a little bodily labour, may write books in philosophy, poetry, politicks, law, mathematics and theology, without the least assistance from genius or study. He then led me to the frame, about the sides whereof all his pupils stood in ranks. It was twenty foot square, placed in the middle of the room. The superficies was composed of several bits of wood, about the bigness of a dye, but some larger than others. They were all linked together by slender wires. These bits of wood were covered on every square with paper pasted on them; and, on these papers were written all the words of their language in their several moods, tenses, and declensions, but without any order. The professor then desired me to observe, for he was going to set his engine at work. The pupils at his command took each of them hold of an iron handle, whereof there were forty fixed round the edges of the frame; and giving them a sudden turn, the whole disposition of words was entirely changed. He then commanded six and thirty of the lads to read the several lines softly as they appeared upon the frame; and where they found three or four words together that might make part of a sentence, they dictated to the four remaining boys who were scribes. This work was repeated three or four times, and at every turn the engine was so contrived, that the words shifted into new places, as the square bits of wood moved upside down.” (Jonathan Swift, Gulliver’s Travels, A Voyage to Balnibarbi) What astonishing forecast did Swift show in that narrative that, in spite of the underlying incredulity and irony, still clarifies our surprise when faced to what might seem to some of us just an abandonment of all that architects and designers have cherished: creativeness and inventiveness. Yet, we could argue that such a radical shift in paradigm occurred once when master builders left the construction ground and took seat at drafting boards. The whole body of design and construction knowledge was split into what now seem to us just specialties undertaken by more and more isolated professionals. That shift entailed new forms of representation and prediction which now each and all architects take for granted. Also, Cartesian space representation turned out to be the main instrument for professional practice, even if one can argue that it is not more than the unfolding of stone carving techniques that master builders and guilds were so fond of. Enter computing and all its unfolding, i.e. DNA coding, fractal geometry, generative computing, nonlinear dynamics, pattern generation and cellular automata, as a whole new chapter in science, and compare that to conical perspective, descriptive and analytical geometry and calculus, and an image begins to form, delineating a separation between architect and digital designer. In previous works, we have tried approaching the issues regarding architects education in a more consensual way. But it seems now that the whole curricular corpus might be changed as well. The very foundations upon which we prepare future professionals shall change, not only in College, but in High School as well. In this paper, we delve further into the disconnect between current curricula and digital design practices and suggest new disciplinary grounds for a new architectural education.
keywords Educational paradigm; Design teaching; Design methods;
series SIGRADI
email
last changed 2016/03/10 10:02

_id acadia08_478
id acadia08_478
authors Yan, Wie
year 2008
title Environment-Behavior Simulation: From CAD to BIM and Beyond
doi https://doi.org/10.52842/conf.acadia.2008.478
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 478-485
summary This paper describes our research on environment-behavior simulation and focuses on the modeling of built environments using Computer-Aided Design (CAD) and Building Information Modeling (BIM). Our environment-behavior simulation addresses the problem of predicting and evaluating the impacts of built environments on their human inhabitants. We present simulation systems comprising an agent-based virtual user model and building models created with CAD and BIM tools. We compare the use of CAD vs. BIM with two case studies for environment-behavior simulation, and describe the essential parts of modeling buildings for the simulation, including geometry modeling—how the building components are shaped, semantic modeling—what the building components are, and pattern modeling—how the building components are used by users. We conclude that a new extensible and pattern-embedded BIM system will be necessary to facilitate environment-behavior simulation.
keywords Behavior; BIM; Environment; Information; Simulation
series ACADIA
last changed 2022/06/07 07:57

_id caadria2008_41_session4b_335
id caadria2008_41_session4b_335
authors Biao, Li; Li Rong, Xue Kai, Liu Chang, Gao Qin
year 2008
title A Generative Tool Base on Multi-Agent System: Algorithm of “HighFAR” and Its Computer Programming
doi https://doi.org/10.52842/conf.caadria.2008.335
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 335-342
summary Utilizing the principle of multi-agent system by computer programming, the paper presents achievement of an architectural generative design tool which implements intelligent architecture design with the focus of the layout in Asian high density “Floor Area Ratio” (FAR). Applying with the software, architects can get a high density FAR planning design in several minutes. From macroscopic position of building agents in geography to encode the agents by computer programming, the paper expounds the process of the generative tool and its mathematics algorithms.
keywords Multi-agent system, FAR, genetic algorithm, generator
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_480782 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002