CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id sigradi2008_180
id sigradi2008_180
authors Vincent, Charles
year 2008
title Gulliver in the land of Generative Design
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The current trend in architectural design towards architectural computing has been treated both from a philosophical standing point and as an operational systems’ problem, in a quest for explications which could at last break ground for a more broad development and adoption of design tools. As Kostas Terzidis (2007) puts it, the intuitiveness that architects have put on so high a pedestal seems to be the central issue to be dealt with by both views. There seems to be no apparent shortcut toward the reconciliation between traditional practice and new media and most certainly it is not only a problem of interface design, but one of design method clarification and reinterpretation of those methods into computing systems. Furthermore, there’s no doubt left as to whether computing systems can generate such new patterns as to impact our own understanding of architecture. But even if computer algorithms can make possible the exploration of abstract alternatives to an abstract initial idea, as in Mathematica and Processing, the issue of relating abstract and geometric representations of human centered architecture lays in the hands of architects, programmers or, better yet, architect-programmers. What seems now to be the relevant change is that architectural design might escape from the traditional sequence embedded in the need – program – design iterations – solution timeline, substituted by a web of interactions among differing experimental paths, in which even the identification of needs is to be informed by computing. It is interesting to note that the computational approach to architectural design has been praised for the formal fluidity of bubbles and Bezier shapes it entails and for the overcoming of functionalist and serialization typical of modern architecture. That approach betrays a high degree of canonic fascination with the tools of the trade and very little connection to the day to day chores of building design. On the other hand, shall our new tools and toys open up new ways of thinking and designing our built landscape? What educational issues surface if we are to foster wider use of the existing technologies and simultaneously address the need to overtake mass construction? Is mass customization the answer for the dead end modern architecture has led us to? Can we let go the humanist approach begun in Renascence and culminated in Modernism or shall we review that approach in view of algorithmic architecture? Let us step back in time to 1726 when Swift’s ‘Travels into Several Remote Nations of the World by Lemuel Gulliver’ was first published. In Swift’s fierce critic of what seemed to him the most outrageous ideas, he conceived a strange machine devised to automatically write books and poetry, in much the same generative fashion that now, three centuries later, we begin to cherish. “Every one knew how laborious the usual method is of attaining to arts and sciences; whereas by his contrivance, the most ignorant person at a reasonable charge, and with a little bodily labour, may write books in philosophy, poetry, politicks, law, mathematics and theology, without the least assistance from genius or study. He then led me to the frame, about the sides whereof all his pupils stood in ranks. It was twenty foot square, placed in the middle of the room. The superficies was composed of several bits of wood, about the bigness of a dye, but some larger than others. They were all linked together by slender wires. These bits of wood were covered on every square with paper pasted on them; and, on these papers were written all the words of their language in their several moods, tenses, and declensions, but without any order. The professor then desired me to observe, for he was going to set his engine at work. The pupils at his command took each of them hold of an iron handle, whereof there were forty fixed round the edges of the frame; and giving them a sudden turn, the whole disposition of words was entirely changed. He then commanded six and thirty of the lads to read the several lines softly as they appeared upon the frame; and where they found three or four words together that might make part of a sentence, they dictated to the four remaining boys who were scribes. This work was repeated three or four times, and at every turn the engine was so contrived, that the words shifted into new places, as the square bits of wood moved upside down.” (Jonathan Swift, Gulliver’s Travels, A Voyage to Balnibarbi) What astonishing forecast did Swift show in that narrative that, in spite of the underlying incredulity and irony, still clarifies our surprise when faced to what might seem to some of us just an abandonment of all that architects and designers have cherished: creativeness and inventiveness. Yet, we could argue that such a radical shift in paradigm occurred once when master builders left the construction ground and took seat at drafting boards. The whole body of design and construction knowledge was split into what now seem to us just specialties undertaken by more and more isolated professionals. That shift entailed new forms of representation and prediction which now each and all architects take for granted. Also, Cartesian space representation turned out to be the main instrument for professional practice, even if one can argue that it is not more than the unfolding of stone carving techniques that master builders and guilds were so fond of. Enter computing and all its unfolding, i.e. DNA coding, fractal geometry, generative computing, nonlinear dynamics, pattern generation and cellular automata, as a whole new chapter in science, and compare that to conical perspective, descriptive and analytical geometry and calculus, and an image begins to form, delineating a separation between architect and digital designer. In previous works, we have tried approaching the issues regarding architects education in a more consensual way. But it seems now that the whole curricular corpus might be changed as well. The very foundations upon which we prepare future professionals shall change, not only in College, but in High School as well. In this paper, we delve further into the disconnect between current curricula and digital design practices and suggest new disciplinary grounds for a new architectural education.
keywords Educational paradigm; Design teaching; Design methods;
series SIGRADI
email
last changed 2016/03/10 10:02

_id acadia08_292
id acadia08_292
authors Celento, David; Del Harrow
year 2008
title ceramiSKIN: Digital Possibilities for Ceramic Cladding Systems
doi https://doi.org/10.52842/conf.acadia.2008.292
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 292-299
summary CeramiSKIN is an inter-disciplinary investigation by an architect and a ceramics artist examining new possibilities for ceramic cladding using digital design and digital fabrication techniques. Research shown is part of an ongoing collaborative residency at The European Ceramics Work Centre. ¶ Ceramics are durable, sustainable, and capable of easily assuming detailed shapes with double curvature making ceramics seemingly ideal for digitally inspired “plastic” architecture. The primary reason for the decline in complex ceramic cladding is that manual mold-making is time-consuming—which is at odds with today’s high labor costs and compressed construction timeframes. We assert that digital advances in the area of mold-making will assist in removing some of the barriers for the use of complex ceramic cladding in architecture. ; The primary goals of ceramiSKIN as they relate to digitally assisted production are: greater variety and complexity, reduced cost and time, a higher degree of accuracy, and an attempt to facilitate a wider range of digital design possibilities through the use of a ceramics in architectural cladding systems. ¶ The following paper begins with an overview discussing double curvature and biophilia in architecture and their relationship to ceramics. This is followed by detailed commentary on three different experiments prior to a concluding summary.
keywords Biomorphic; Collaboration; Complex Geometry; Digital Fabrication; Skin
series ACADIA
last changed 2022/06/07 07:55

_id caadria2008_46_session5a_375
id caadria2008_46_session5a_375
authors Otani, Makoto and Tatsuya Kishimoto
year 2008
title Fluctuating patterns of architecture façade and their automatic CREAtion
doi https://doi.org/10.52842/conf.caadria.2008.375
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 375-382
summary Today, buildings with monotonous façade fill the city. However, many buildings which the elements constituting their façade are changed were seen in work designed by architects. This paper aims at examining the potentiality of automated fluctuating design creation focused on architecture façades, by analysing the design trend of architectural fluctuating designs and creating a fluctuating façade automatically based on the analysis.
keywords Automatic creation; fluctuation; façade design
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2008_080
id sigradi2008_080
authors Andrés, Roberto
year 2008
title Hybrid Art > Synthesized Architecture
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper investigates possible intersections between some contemporary artistic modalities and architectural practice. At first, it describes and discusses different uses of art in architectural history. Through the analyzes of Le Corbusier’s artistic and architectural practices, it observes the limits of looking at art as only ‘inspiration’ for architectural form and points to the necessity of surpassing this formal approach. More than bringing pictorial ‘inspiration’, art, as a experimental field, can change our architectural procedures and approaches - a much richer and powerful addition to the development of architecture. It discusses then, the confluence of architecture, information and communication technologies. Very commonly present in our contemporary life, not only on the making of architecture – computer drawings and modeling of extravagant buildings – nor in ‘automated rooms’ of the millionaire’s houses. Televisions, telephones and computers leave the walls of our houses “with as many holes as a Swiss cheese”, as Flusser has pointed. The architecture has historically manipulated the way people interact, but this interaction now has been greatly changed by new technologies. Since is inevitable to think the contemporary world without them, it is extreme urgent that architects start dealing with this whole universe in a creative way. Important changes in architecture occur after professionals start to research and experiment with different artistic medias, not limiting their visions to painting and sculpture. The main hypothesis of this paper is that the experiments with new media art can bring the field of architecture closer to information and communication technologies. This confluence can only take form when architects rise questions about technology based interaction and automation during their creative process, embodying these concepts into the architecture repertoire. An educational experience was conducted in 2007 at UFMG Architecture School, in Brazil, with the intention of this activity was to allow students to research creatively with both information technology and architecture. The students’ goal was to create site-specific interventions on the school building, using physical and digital devices. Finally, the paper contextualizes this experience with the discussion above exposed. Concluding with an exposition of the potentialities of some contemporary art modalities (specially the hybrid ones) in qualifying architectural practices.
keywords Architecture; Information and Communication Technologies; Digital Art; Site Specific Art; Architectural Learning.
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2008_005
id ecaade2008_005
authors Breen, Jack; Stellingwerff, Martijn
year 2008
title Capital A to Z
doi https://doi.org/10.52842/conf.ecaade.2008.759
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 759-766
summary Throughout the history of architecture, the Capital – the intermediate between a column and the beam or surface it supports – has been a recurring feature in architectural composition and articulation. In this paper we describe results and findings from the Capital A to Z exercise within the Ornamatics Course from the TU-Delft MSc curriculum. We will show how this exercise combines various digital and physical processes for form finding and how further insights can come from the actual production of models and prototypes. Conclusions will be drawn regarding the integrated educational setup and regarding the influence of different methods and tools on the design process and the design results.
keywords Computer aided manufacturing and modelling, composition, prototyping, ornamatics, education-based research
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia08_118
id acadia08_118
authors Cabrinha, Mark
year 2008
title Gridshell Tectonics: Material Values Digital Parameters
doi https://doi.org/10.52842/conf.acadia.2008.118
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 118-125
summary This paper begins with a simple proposition: rather than mimicking the geometric structures found in nature, perhaps the most effective modes of sustainable fabrication can be found through understanding the nature of materials themselves. Material becomes a design parameter through the constraints of fabrication tools, limitations of material size, and most importantly the productive capacity of material resistance—a given material’s capacity and tendencies to take shape, rather than cutting shape out of material. ¶ Gridshell structures provide an intriguing case study to pursue this proposition. Not only is there clear precedent in the form-finding experiments of Frei Otto and the Institute for Lightweight Structures, but also the very NURBS based tools of current design practices developed from the ability of wood to bend. Taking the bent wood spline quite literally, gridshells provide a means that is at once formally expressive, structurally optimized, materially efficient, and quite simply a delight to experience. The larger motivation of this work anticipates a parametric system linking the intrinsic material values of the gridshell tectonic with extrinsic criteria such as programmatic needs and environmental response. ¶ Through an applied case study of gridshells, the play between form and material is tested out through the author’s own experimentation with gridshells and the pedagogical results of two gridshell studios. The goal of this research is to establish a give-and-take relationship between top-down formal emphasis and a bottom-up material influence.
keywords Digital Fabrication; Form-Finding; Material; Pedagogy; Structure
series ACADIA
last changed 2022/06/07 07:54

_id caadria2008_43_session4b_350
id caadria2008_43_session4b_350
authors Chen, Rui; Xiangyu Wang
year 2008
title Tangible Augmented Reality for Design Learning: An Implementation Framework
doi https://doi.org/10.52842/conf.caadria.2008.350
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 350-356
summary Nowadays, it is becoming more and more popular for teaching and learning to be supported in technology-supported settings. These digital technologies create new instructional methods. Tangible Augmented Reality (AR) technology can construct an innovative and interactive learning space by merging computer-generated learning materials and stimuli of virtuality into a real space. Different cognitive and social-learning processes might be involved with different learning activities that can be potentially supported by different technology modes of tangible AR. This paper discusses an empirical research framework for designing and implementing tangible AR technologies to improve the pedagogical effectiveness of learning processes involved in architectural design education. The research framework includes the theoretical process of applying tangible AR in design learning, the devised experimentations and associated methodology. Issues and benefits of incorporating tangible AR into architectural design learning are also investigated and discussed.
keywords Augmented Reality, architectural design learning, framework, learning theory, tangible interface
series CAADRIA
email
last changed 2022/06/07 07:55

_id 6953
id 6953
authors Derix C, Miranda P and Gamlesaeter A
year 2008
title Design Support Systems for Sustainable Development in the Thames Gateway area of London: “Smart Solutions for Spatial Planning “(SSSP)
source Design Computation Cognition conference 2008
summary This presentation will describe the methods and approaches used to develop applications for Urban Planners for use in masterplanning and scenario building. It was developed using a grant from the Higher Educational Council for England, and the Department for Trade and Industry as part of the “Building Sustainable Communities“ project.
keywords urban planning, sustainability, masterplanning, computational design
series other
type workshop
email
more http://www.springer.com/computer/information+systems+and+applications/book/978-1-4020-8727-1
last changed 2012/09/17 21:20

_id sigradi2008_012
id sigradi2008_012
authors Dokonal, Wolfgang
year 2008
title What is the state of digital architectural design?
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary What is the state of digital architectural design? The ubiquity of the computer in architecture can be seen in the many computer based presentations from famous architectural practices. BIM (Building Information Modelling) is the key word and we can see implementations in very ambitious projects all over the world. Glossy magazines show the results of this kind of architecture and predict that this is the future of our profession. But when we go out into the “small world” (in Europe) and talk with architects in small firms, there is a very different reality – at least at the moment. Although they all agree that the computer is crucial for their work, it is a love/hate relationship for many them. Most still use the computer purely as a drafting device and AutoCAD is still the dominant tool. Although many of them agree with the statement that you can use the computer for design, only a minority really use the computer as a design tool in the early design stages. To find out more about the reality of the use of computers in design in “small town Europe” we have been undertaking two different kinds of research over the past 4 years. The first one is an educational experiment using first year’s students to find out about the different qualities of designing with and without the computer. The results have been presented at previous conferences and, since we are doing a last run of these experiments this year, we will update and finalise our findings in this paper. To make it comparable to previous years, we use largely the same settings using the same type of student (first year) and the same project/site. We will also be comparing the results for students designing ‘freestyle’ ie in the way that they want against the previous years controlled groups. The second strand of research we have followed is a survey amongst practitioners and some of the above statements came out of this survey. We did this survey using a web questionnaire and focused on a particular region of Europe. Although the numbers of participants for this survey were quite satisfying we are re-running the survey in a different region and country to see whether there are significant differences. The results of our research and our experience as teachers and architects leads us to the main question of how we can give recommendations on how to teach design the new generation of architects. In many aspects most of the teaching that is done in our faculties is still strictly divided into teaching design and teaching computer skills. The crucial question for architectural education are the implications of the ubiquity of the computer will have especially in the field of design. We will try to give some suggestions for these effects this could have on our teaching. In the long run, this is the only way to avoid some of the pitfalls and bring the benefits of computers in design to our small architectural firms. The paper will present a summary of the results of our research and try to propose an answer to the question: “What is the state of digital design in small town Europe?”
series SIGRADI
email
last changed 2016/03/10 09:50

_id ecaade2008_184
id ecaade2008_184
authors Fricker, Pia; Hovestadt, Ludger; Braach, Markus; Dillenburger, Benjamin; Fritz, Oliver; Rüdenauer, Kai; Lemmerzahl, Steffen
year 2008
title Form Follows Structure?
doi https://doi.org/10.52842/conf.ecaade.2008.451
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 451-458
summary This paper can be viewed as the continued development of a research project presented at last year’s eCAADe. The project focused on the potential and possibilities of cooperation among architects, investors with concrete building projects, and researchers at the university level working on generative design and parametric construction. After having spent several years of research on design techniques in a purely academic setting at the university we see, contrary to our fears, that reality and the integration of concrete factors such as budget, time management, etc. does not diminish but rather improves the quality of our work. This work is not primarily concerned with the development of a new architectural language but the intelligent use of modern computer technology based on digitized planning processes defined as ‘complex building design’. Designs developed in this manner can be distinguished by certain characteristics, the evaluation of which is a point critically discussed in the following paper.
keywords Generative Design, Collaborative Design, Parametric Design, User Participation in Design, Case Study, Strategic Design
series eCAADe
email
last changed 2022/06/07 07:50

_id ac21
id ac21
authors Giddings B, Horne M
year 2008
title The Changing Patterns of Architectural Design Education
source Architecture and Modern Information Technologies, Vol. 3, No. 4. ISSN-1998-4839
summary Digital technologies have been introduced to students of architecture for over two decades and at present it could be argued that students are producing some of the highest quality designs, and some of the most interesting forms ever to come from University Schools. The value of computer aided design (CAD) is also being demonstrated in architectural practice, with high profile, large budget, bespoke and iconic buildings designed by internationally renowned architects. This paper reviews the changing patterns of architectural design education and considers the contribution digital technologies could make to buildings with more commonplace uses. The study offers a perspective on different kinds of buildings and considers the influence that emerging technologies are having on building form. It outlines digital technologies, alongside students’ application for architectural design and considers the role they could play in the future, in developing a shared architectural language. It is suggested that some of the biggest opportunities for future research will be in the design of external spaces, often a neglected part of architectural design education.
keywords architectural design education, digital technologies
series other
type normal paper
email
more http://www.marhi.ru/AMIT
last changed 2008/11/02 20:38

_id acadia08_208
id acadia08_208
authors Griffiths, Jason
year 2008
title Man + Water + Fan = Freshman: Natural Process of Evaporative Cooling and the Digital Fabrication of the ASU Outdoor Dining Pavilion
doi https://doi.org/10.52842/conf.acadia.2008.208
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 208-213
summary To the east of Johnson City TX is the Lyndon B. Johnson’s family home. Part of the Johnson Estate2 is given over to a working farm circa 1870 that presents various aspects of domestic practice from the era. This includes a desert fridge which is a simple four-legged structure with a slightly battered profile that’s draped in calico. Its principle is simple; water from an upturned jar is drawn by osmosis down the sides of the calico where it evaporates in wind currents drawn though a “dog run” between two log cabins. Cooled air circulates within the structure and where cheese and milk are kept fresh during the summer. The desert fridge is a simple system that reaches a state of equilibrium through the natural process of evaporation. ¶ This system provides a working model for a prototype structure for an outdoor dining pavilion that was designed and constructed on the campus of Arizona State University. The desert fridge is the basis for a “biological process”3 of evaporative cooling that has been interpreted in terms a ritual of outdoor dining in arid climates. The pavilion is intended as a gathering point and a place of interaction for ASU freshmen. The long-term aim of this project is to provide a multiple of these pavilions across the campus that will be the locus of a sequence of dining events over a “dining season”4 during the fall and spring semester. ; This paper describes how the desert fridge principle has been interpreted in the program and construction of the dining pavilion. It explores a sequence of levels by which the structure, via digital production process, provides an educational narrative on sustainability. This communicative quality is portrayed by the building in direct biological terms, through tacit knowledge, perceived phenomena, lexical and mechanical systems. The paper also describes how these digital production process were used in the building’s design and fabrication. These range from an empirical prognosis of evaporative cooling effects, fluid dynamics, heat mapping and solar radiation analysis through to sheet steel laser cutting, folded plate construction and fully associative variable models of standard steel construction. The aim of the pavilion is to create an environment that presents the evaporative cooling message at a multiple of levels that will concentrate the visitor in holistic understanding of the processes imbued within the building.5
keywords Communication; Digital Fabrication; Environment; System
series ACADIA
last changed 2022/06/07 07:51

_id acadia08_458
id acadia08_458
authors Hemsath, Timothy; Robert Williams; Ronald Bonnstetter; Leen-Kiat Soh
year 2008
title Digital CADCAM Pedagogy Model: Intelligent Inquiry Education
doi https://doi.org/10.52842/conf.acadia.2008.458
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 458-463
summary Prototype manufacturing as an educational tool has been very successful at the college level in architecture and engineering design. This paper discusses an innovative inquiry-based learning approach rather than the problem-based learning models commonly utilized by other similar programs. For example, several research-funded technology projects (e.g., Cappelleri et al. 2007) look at involving students in problem-based learning exercises (e.g., building robots); however, these exercises (while providing valuable experiences) have predetermined outcomes ingrained by the teachers, the project structure, and the components used to construct the devices. Therefore, inquisitive and creative problem solving is limited to the “kit-of-parts” in their approach to solving the problem. The inquiry-based CADCAM pedagogy model is more concerned with the process of solving a problem through the vehicle of prototyping than with the specificity of the design project itself. This approach has great potential. First, the need to solve the problem drives learning on multiple levels, integrating interdisciplinary ideas into the problem and solution. Second, the problem interlocks disciplines through inquiry knowledge building in team exercises. Finally, it encourages diversity and flexibility by allowing students to look at problems from multiples perspectives and points of view.
keywords CAD; Education; Evaluation; Pedagogy; Rapid Prototyping
series ACADIA
last changed 2022/06/07 07:49

_id ecaade2008_101
id ecaade2008_101
authors Jabi, Wassim; Hall, Theodore; Passerini, Katia; Borcea, Cristian; Jones, Quentin
year 2008
title Exporting the Studio Model of Learning
doi https://doi.org/10.52842/conf.ecaade.2008.509
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 509-516
summary We have conducted a series of interdisciplinary studios that partner students in the School of Architecture with peers in the College of Computing Sciences, with two principal goals: to foster creativity in the development of information technology, and conversely, to support creativity through information technology. Our studio project focuses on ubiquitous social computing as a topic of interest to both communities that requires their collaboration to realize a physical implementation. There are administrative as well as cultural hurdles in conducting such a studio. To assess the impact of the pedagogical approach, we employed qualitative observations as well as quantitative survey data. Best results depend on achieving a degree of parity in studio experience across disciplines.
keywords interdisciplinary design studio, ubiquitous social computing, computer supported collaborative work, human computer interaction
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia08_174
id acadia08_174
authors Jaskiewicz, Tomasz
year 2008
title ‘iPortals’ as a Case Study Pre-Prototype of an Evolving Network of Interactive Spatial Components
doi https://doi.org/10.52842/conf.acadia.2008.174
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 174-181
summary The art and craft of design and creation of buildings is undergoing a radical paradigm shift. This shift is being driven by diverse novel cross-disciplinary technical possibilities, as well as by ongoing cultural transformations. They all, directly or indirectly, originate from omnipresent advancements in information technologies. Instant and ubiquitous availability of information and immediate access to computing power pervasively penetrating our lives is profoundly transforming our culture. This phenomenon has enormous implications for architecture in a multitude of ways1. ¶ Firstly, the speed of changes that occur in modern-day culture and society makes it inconvenient or even entirely impossible to design buildings with fixed and permanent functionalities. As lifestyle patterns, production methods and environmental conditions, to name a few factors only, may now dramatically change from one day to another, architecture has to become flexible. It has to allow dynamic, active, or even pro-active adaptation and customization of spaces on many levels of its functionality2. ¶ Secondly, these profound cultural changes are not only of technical relevance. In its process-driven character, information technology strongly mandates the already widely recognized ontology of becoming, proclaimed by the prominent minds of contemporary philosophy and science. This process-oriented worldview, supported by latest technological possibilities3, has caused a radical change in the common sense of the manner in which architecture has to be understood and dealt with4. As an effect, it requires an in-depth reconsideration of the nature of processes of both creation and participation in spatial environments.
keywords Environment; Interactive; Open Systems; Prototype; Skin
series ACADIA
last changed 2022/06/07 07:52

_id kasyanov02_paper_eaea2007
id kasyanov02_paper_eaea2007
authors Kasyanov, Nikolai
year 2008
title Study of Architectural Shape Formation in Comparison with Natural Morphogenesis Using Computer Simulation
source Proceedings of the 8th European Architectural Endoscopy Association Conference
summary Geometric accuracy of architectural computer models allows to percept and to analyze the three-dimensional spatial compositions using computer images. The concepts and methodology of modern interdisciplinary science, in particular fractal geometry, have already been successfully applied in the various scientific fields, as astronomy, physics, chemistry, biology. Modern ecological paradigm does not separate human life and anthropogenic world from the natural environment considering all as unitary nonlinear ecosystem. The analysis of the architectural shape formation is a part of the study of morphogenesis in such different worlds, as non-living and living nature and man-made forms – real as well as virtual architecture.
keywords morphogenesis, architectural landscape, computer simulations
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id caadria2008_25_session3b_205
id caadria2008_25_session3b_205
authors Kim, Miyun; Jinwon Choi
year 2008
title Visualizing Environmental Information on The Geo-Spatial Urban Map
doi https://doi.org/10.52842/conf.caadria.2008.205
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 205-212
summary Environmental and residential destruction caused by urbanization and land development raises a serious issue. In addition, advanced technology has quickly changed the structure of cities, followed by revolutionary changes are growing faster these days and this requires us to turn our attention into developing a symbiotic eco-city, which will make it possible for further sustainable development. In this regard, it grows much more important to manage a flood of information from various intelligent devices and systems for environmental maintenance. The structure and meaning of modern info-oriented cities have changed their focus from tangible materials and resources, or energy into intangible information and knowledge. Now it has become the most important on how to manage and utilize a vast amount of information in order to strengthen the competitiveness and improve the life quality. This study finds methods for an effective city management and planning, or visualization of information for ecology-friendly education in order to provide a comfortable city life and develop a cleaner city, by efficiently managing information on several ecology protection areas and their sauces of pollution in the centre of a city. The goal is to help city managers or planners to be better aware of environmental information related to their work.
keywords Ecology-friendly city; environmental information; geo-spatial urban map; classification, visualization
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id sigradi2008_099
id sigradi2008_099
authors Kotsopoulos, Sotirios; Lawrence Sass
year 2008
title Teaching Architectural Design through Computer Modeling, Rendering and Digital Fabrication
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The paper examines the process of introducing the rudiments of architectural design and computation through computer modeling, rendering and digital fabrication. The scope of the paper is educational. The context of the paper is the teaching of an introductory course to Design Computing. Computational concepts from the digital modeling, rendering and fabrication techniques developed for the course, as well as the students’ response, are discussed in the paper.
keywords Design education, digital representation, production
series SIGRADI
email
last changed 2016/03/10 09:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_487828 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002