CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia08_134
id acadia08_134
authors Peters, Brady
year 2008
title Copenhagen Elephant House: A Case Study of Digital Design Processes
doi https://doi.org/10.52842/conf.acadia.2008.134
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 134-141
summary This paper outlines the digital design processes involved in the design and construction of the new Elephant House at Copenhagen Zoo. Early design concepts for the canopy were tested using physical sketch models. The geometric complexity of these early physical models led to the involvement of the Specialist Modelling Group and the use of the computer to digitally sketch 3D CAD models. After many studies, the complex form of the canopies was rationalised using torus geometry. A computer program was written to generate the canopy glazing and structure. This parametric system was developed to be a design tool, and was developed by an architectural designer working with the team. Through its use the team were able to explore more design options, and alter the design farther along in the design process; however, this generative tool was created largely as a CAD efficiency tool. Another series of computer programs were written to generate and populate a shading system based on environmental analysis. Unlike the computer program that generated the structure and glazing, this program was not developed to make the generation of complex geometric structures more efficient, but developed to explore computational approaches that would have been impossible without the computer. Most of the canopy’s design was communicated to fabricator through a geometry method statement, a method that has been proven to be effective in the past. The project completed in June 2008.
keywords Complex Geometry; Computation; Design; Generative; Sustainability
series ACADIA
last changed 2022/06/07 08:00

_id ecaade2008_055
id ecaade2008_055
authors Beirão, José; Duarte, José; Stouffs, Rudi
year 2008
title Structuring a Generative Model for Urban Design: Linking GIS to Shape Grammars
doi https://doi.org/10.52842/conf.ecaade.2008.929
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 929-938
summary Urban Design processes need to adopt flexible and adaptive procedures to respond to the evolving demands of the contemporary city. To support such dynamic processes, a specific design methodology and a supporting tool are needed. This design methodology considers the development of a design system rather than a single design solution. It is based on patterns and shape grammars. The idea is to link the descriptions of each pattern to specific shape rules inducing the generation of formal solutions that satisfy the pattern. The methodology explores, from the urban designer point of view, the capacity of a shape grammar to codify and generate urban form (Duarte et al, 2007). This paper defines the ontology of urban entities to build on a GIS platform the topology describing the various components of the city structure. By choosing different sets of patterns the designer defines his vision for a specific context. The patterns are explicated into shape rules that encode the designer’s interpretation of the pattern, and operate on this ontology of urban entities generating solutions that satisfy the pattern’s concept. Some examples of the topological relations are shown.
keywords Patterns, shape grammars, ontology, generative urban design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia08_152
id acadia08_152
authors Biloria, Nimish
year 2008
title Morphogenomic Urban and Architectural Systems: An Investigation into Informatics Oriented Evolution of Form: The Case of the A2 Highway
doi https://doi.org/10.52842/conf.acadia.2008.152
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 152-157
summary This research paper exemplifies upon a novel information integrated generative design method: Morphogenomics, being experimented with at Hyperbody, TU Delft. Morphogenomics, a relatively new research area, which deals with the intricacies of morphological informatics. This paper furthermore discusses an ongoing Morphogenmoics oriented design-research case: the development of a Distributed Network-city along the A2 highway, Netherlands. The A2 highway, development is a live project seeking urban development on either side of this busy highway. Hyperbody, during the course of this research initiative developed a series of real-time interactive computational tools focusing upon the collaborative contextual generation of a performative urban and architectural morphology for the A2 highway. This research paper elaborates upon these computational techniques based Morphogenomic approach and its resultant outcomes.
keywords Computation; Evolution; Flocking; Information; Morphogenesis
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
doi https://doi.org/10.52842/conf.acadia.2008.072
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2022/06/07 07:50

_id cdc2008_393
id cdc2008_393
authors Oxman, Neri
year 2008
title Oublier Domino: On the Evolution of Architectural Theory from Spatial to Performance-based Programming
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 393-402
summary The conception of the architect as form-giver has since historical times dominated the field of architecture. It is precisely this image which has devalued material practice in the distinction between form and matter consistently inherent in architectural discourse. Recent technological developments in the field of design computation, coupled with environmental concerns and philosophical debates have contributed to the shift in focus from form, as the exclusive object of design practice to matter and materials as an alternative approach to the conception of form. Such a shift calls for a reorientation of existing protocols for design generation. Design based upon performance appears to justify and make sensible computational design processes that integrate material properties with structural and environmental constraints. These processes, as demonstrated here, contribute to the elimination of traditional architectural typologies replaced with spatial organization driven by need and comfort. This paper proposes a new approach in design where processes of formgeneration supporting sustainable design solutions are directly informed by structural and environmental constraints. Computational models are developed and implemented that incorporate data-driven form generation. Fabrication tools and technologies are customized to include material properties and behavior. The projects illustrated in this paper are currently on display at the Museum of Modern Art.
email
last changed 2009/01/07 08:05

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
doi https://doi.org/10.52842/conf.acadia.2008.066
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia08_464
id acadia08_464
authors Belcher, Daniel; Brian Johnson
year 2008
title MxR: A Physical Model-Based Mixed Reality Interface for Design Collaboration, Simulation, Visualization and Form Generation
doi https://doi.org/10.52842/conf.acadia.2008.464
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 464-471
summary MxR—pronounced “mixer”—is a Mixed/Augmented Reality system intended to support collaboration during early phases of architectural design. MxR allows an interdisciplinary group of practitioners and stakeholders to gather around a table, discuss and test different hypotheses, visualize results, simulate different physical systems, and generate simple forms. MxR is also a test-bed for collaborative interactions and demonstrates different configuration potentials, from exploration of individual alternatives to group discussion around a physical model. As a MR-VR transitional interface, MxR allows for movement along the reality-virtuality continuum, while employing a simple tangible user-interface and a MagicLens interaction technique.
keywords Augmented Reality; Collaboration; Interactive; Interface; Physical Modeling
series ACADIA
last changed 2022/06/07 07:54

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia08_300
id acadia08_300
authors Doumpioti, Christina
year 2008
title Adaptive Growth of Fibre Composite Structures
doi https://doi.org/10.52842/conf.acadia.2008.300
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 300-307
summary The core idea of this research is the incorporation of the morphogenetic principles found in natural systems in the generation of fibre-composite structures by exploiting, at the maximum, the intrinsic performative capacities of the material system in use. The intention is the integration of form, material, structure and program into a multi-performative system that will satisfy simultaneously several, even conflicting objectives, in order to achieve an optimal compromise. This process involves the combination and implementation of concepts and methods based on precedent studies in the field of biomimetics, as well as form-finding digital and physical experiments that inform a coherent design methodology, leading to a structural system able to be fabricated using cutting-edge technology.
keywords Adaptation; Composite; Fiber; Integrative; Morphogenesis
series ACADIA
last changed 2022/06/07 07:55

_id sigradi2008_089
id sigradi2008_089
authors Godoi,Giovana; Gabriela Celani
year 2008
title A study about facades from historical brazilian town using shape grammar
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Shape grammars have been used in architecture for analysis and synthesis - in the first case, mainly for the characterization of styles and in the later for the generation of novel compositions. The present research proposes the use of shape grammars for establishing guidelines for the requalification of historical areas that have lost their original characteristics due to improper renovations. The use of shape grammars proposed here starts with the definition of a set of rules for characterizing the original style of an area. Based on these rules, the main characteristics of the area are confirmed, such as siting, proportions between walls and openings in the façades, overall dimensions constraints, and so on. Next, the rules of the grammar are transformed, to allow the use of contemporary building materials, as well as the incorporation of contemporary living styles in the new design. Rules must take into account two cases: original buildings that have been inadequately transformed, and buildings that have been completely torn down and will replace been completely replaced by new constructions. Both cases need to be harmonious with the remaining original buildings, however without simply copying the existing style. In both cases, rules have been used to establish the guidelines for the renovations, which resulted in modern urban environments that resemble the original historical sites in terms of spatial relations and proportions. They also create an appropriate environment for the observations of the preserved original buildings, which would otherwise look like aliens in a completely transformed neighborhood. The latter case is very common in most Brazilian cities, especially in the case of São Paulo, where houses from the late 1800´s and early 1900´s are flanked by high rise apartment buildings. In order to develop and test the proposed method, a study will be carried out in a small Brazilian town called Monte Alegre do Sul. The town was chosen because its original urban morphology, developed in the XIXth century, is still relatively well preserved, although part of the original façades have been transformed. The objective of the research is to develop a shape grammar to set guidelines for the re-adaptation of the already renovated façades and reconstruction of other ones in Monte Alegre do Sul.
keywords Shape grammar, generative design systems
series SIGRADI
email
last changed 2016/03/10 09:52

_id ddss2008-02
id ddss2008-02
authors Gonçalves Barros, Ana Paula Borba; Valério Augusto Soares de Medeiros, Paulo Cesar Marques da Silva and Frederico de Holanda
year 2008
title Road hierarchy and speed limits in Brasília/Brazil
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary This paper aims at exploring the theory of the Social Logic of Space or Space Syntax as a strategy to define parameters of road hierarchy and, if this use is found possible, to establish maximum speeds allowed in the transportation system of Brasília, the capital city of Brazil. Space Syntax – a theory developed by Hillier and Hanson (1984) – incorporates the space topological relationships, considering the city shape and its influence in the distribution of movements within the space. The theory’s axiality method – used in this study – analyses the accessibility to the street network relationships, by means of the system’s integration, one of its explicative variables in terms of copresence, or potential co-existence between the through-passing movements of people and vehicles (Hillier, 1996). One of the most used concepts of Space Syntax in the integration, which represents the potential flow generation in the road axes and is the focus of this paper. It is believed there is a strong correlation between urban space-form configuration and the way flows and movements are distributed in the city, considering nodes articulations and the topological location of segments and streets in the grid (Holanda, 2002; Medeiros, 2006). For urban transportation studies, traffic-related problems are often investigated and simulated by assignment models – well-established in traffic studies. Space Syntax, on the other hand, is a tool with few applications in transport (Barros, 2006; Barros et al, 2007), an area where configurational models are considered to present inconsistencies when used in transportation (cf. Cybis et al, 1996). Although this is true in some cases, it should not be generalized. Therefore, in order to simulate and evaluate Space Syntax for the traffic approach, the city of Brasília was used as a case study. The reason for the choice was the fact the capital of Brazil is a masterpiece of modern urban design and presents a unique urban layout based on an axial grid system considering several express and arterial long roads, each one with 3 to 6 lanes,
keywords Space syntax, road hierarchy
series DDSS
last changed 2008/09/01 17:06

_id acadia08_192
id acadia08_192
authors Lee, Charles
year 2008
title The Thermal Organism And Architecture
doi https://doi.org/10.52842/conf.acadia.2008.192
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 192-199
summary Throughout the history of architectural discourse the concept of metabolic function in a building and a buildings relationship to its creators is expressed by keen designers who understand the subtle linkage. Organistic homeostasis is a biological function found in all mammals including humans. The interior generation of heat classifies man as endothermic. Endothermic heat generation allows for a very controlled equilibrium and is a characteristic of more complex organisms. The body has produced highly evolved surface systems to help efficiently manage the flow of heat energy in and out of the body. I suggest building envelopes represent the human being projecting itself outwards in a prosthetic extension of the skin. Inherent in this projection are the same demands of envelope put forth in the body. In my research of anatomy I have found one system that has evolved to help facilitate endothermic heat regulation in mammals at the skin level, which is hair. How does hair transcribe into architecture? An analysis into the function of hair and its adaptable morphologies is studied. Hair is a thermal regulating system, its building equivalent are forms of thermal insulation and radiant barriers. Hairs goal is homeostatic equilibrium which has its architectural counterpoint known as the balance point. Hair is an adjustable system that mitigates between internal and external heat loading which is the goal of a building envelope. In conclusion the paper explores these issues and more in new building systems and design tactics that originate from the function of hair.
keywords Biology; Biomimetics; Design; Environment; Responsive
series ACADIA
last changed 2022/06/07 07:51

_id acadia08_278
id acadia08_278
authors Paz Gutierrez, Maria
year 2008
title Material Bio-Intelligibility
doi https://doi.org/10.52842/conf.acadia.2008.278
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 278-285
summary Through the formation of bio-chemical information networks natural materials possess efficient processes of self-organization, adaptability, regeneration and decomposition. This performative excellence has lead science to draw behavioral models from nature implementing biomimmicry (Benyus 1998) in the pursuit of material systems optimization. Design disciplines influenced by this course are integrating living organisms as models of efficiency through bionic systems ever more into their discourse. Architecture, influenced by this tendency, is becoming progressively more aware of the vast benefits that biomimetics can yield particularly in the development of ecologically sensitive systems. Yet, the emerging incorporation of bionics into architecture is differing largely to that within the sciences by centering almost exclusively in form (geometrical pattern) generation. This paper analyzes a rising material design research methodology implementing biomimetics: matter-form parametrics based on bio-physical properties’ data. Specific study of the incorporation of broad-scalar scientific imaging into the formulation of explorative parametric grammar for the development of material systems is analyzed through a bio-synthetic polymer based wall system (SugarWall, Gensler+Gutierrez 2006b). The incorporation of broad scalar imaging and material interdependencies is propelling the emergence of new programming tactics that will affect bio-material systems architectural research.
keywords Behavior; Biomimetics; Material; System; Visualization
series ACADIA
last changed 2022/06/07 07:59

_id acadia08_448
id acadia08_448
authors Alfaris, Anas; Riccardo Merello
year 2008
title The Generative Multi-Performance Design System
doi https://doi.org/10.52842/conf.acadia.2008.448
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 448-457
summary This paper proposes a framework for an integrated computational design system. This design system builds on the strengths inherent in both generative synthesis models and multi-performance analysis and optimization. Four main design mechanisms and their mathematical models are discussed and their integration proposed. The process of building the design system begins by a top-down decomposition of a design concept. The different disciplines involved are decomposed into modules that simulate the respective design mechanisms. Subsequently through a bottom-up approach, the design modules are connected into a data flow network that includes clusters and subsystems. This network forms the Generative Multi-Performance Design System. This integrated system acts as a holistic structured functional unit that searches the design space for satisfactory solutions. The proposed design system is domain independent. Its potential will be demonstrated through a pilot project in which a multi-performance space planning problem is considered. The results are then discussed and analyzed.
keywords Analysis; Behavior; Generative; Optimization; Performance
series ACADIA
type normal paper
last changed 2022/06/07 07:54

_id caadria2008_41_session4b_335
id caadria2008_41_session4b_335
authors Biao, Li; Li Rong, Xue Kai, Liu Chang, Gao Qin
year 2008
title A Generative Tool Base on Multi-Agent System: Algorithm of “HighFAR” and Its Computer Programming
doi https://doi.org/10.52842/conf.caadria.2008.335
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 335-342
summary Utilizing the principle of multi-agent system by computer programming, the paper presents achievement of an architectural generative design tool which implements intelligent architecture design with the focus of the layout in Asian high density “Floor Area Ratio” (FAR). Applying with the software, architects can get a high density FAR planning design in several minutes. From macroscopic position of building agents in geography to encode the agents by computer programming, the paper expounds the process of the generative tool and its mathematics algorithms.
keywords Multi-agent system, FAR, genetic algorithm, generator
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia08_118
id acadia08_118
authors Cabrinha, Mark
year 2008
title Gridshell Tectonics: Material Values Digital Parameters
doi https://doi.org/10.52842/conf.acadia.2008.118
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 118-125
summary This paper begins with a simple proposition: rather than mimicking the geometric structures found in nature, perhaps the most effective modes of sustainable fabrication can be found through understanding the nature of materials themselves. Material becomes a design parameter through the constraints of fabrication tools, limitations of material size, and most importantly the productive capacity of material resistance—a given material’s capacity and tendencies to take shape, rather than cutting shape out of material. ¶ Gridshell structures provide an intriguing case study to pursue this proposition. Not only is there clear precedent in the form-finding experiments of Frei Otto and the Institute for Lightweight Structures, but also the very NURBS based tools of current design practices developed from the ability of wood to bend. Taking the bent wood spline quite literally, gridshells provide a means that is at once formally expressive, structurally optimized, materially efficient, and quite simply a delight to experience. The larger motivation of this work anticipates a parametric system linking the intrinsic material values of the gridshell tectonic with extrinsic criteria such as programmatic needs and environmental response. ¶ Through an applied case study of gridshells, the play between form and material is tested out through the author’s own experimentation with gridshells and the pedagogical results of two gridshell studios. The goal of this research is to establish a give-and-take relationship between top-down formal emphasis and a bottom-up material influence.
keywords Digital Fabrication; Form-Finding; Material; Pedagogy; Structure
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_340
id acadia08_340
authors Chalmers, Chris
year 2008
title Chemical Signaling as a Model for Digital Process in Architecture
doi https://doi.org/10.52842/conf.acadia.2008.340
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 340-345
summary The role of the architect is quite literally one of assembly: synthesizing the various parts of a project into a cohesive whole. It is a difficult job, often requiring the architect to weave many seemingly contradictory concerns into a solution that benefits them all. It is not surprising then, that the many elegant and effective systems found in nature should be inspiring to the architect. Emerging fields like biomimicry and systems dynamics model the patterns of interaction between organisms and their environments in terms of dynamic part to part and part to whole relationships. ¶ Observations of real relationships between organisms and their environments, as they exist in nature, reveal complex feedback loops working across multiple scales. These feedback loops operate by the simultaneous action of two observed phenomena. The first is the classic phenotypic relationship seen when organisms of the same genetic makeup instantiate differently based upon differences in their environment. This is the relationship that was originally proposed by Charles Darwin in his theory of natural selection of 1859. Darwin’s model is unidirectional: the organism adapts to its environment, but not the other way around. It operates at the local scale as individual parts react to the conditions of the whole. (Canguilhem, 1952). ¶ The second phenomenon, which sees its effect at the global scale, is the individual’s role as consumer and producer in the flows of energy and material that surround it. It is the subtle and incremental influence of the organism upon its environment, the results of which are often invisible until they reach a catastrophic threshold, at which point all organisms in the system feel global changes. ; The research presented in this paper addresses the dialectic between organism and environment as each responds reciprocally to the others’ changing state. Such feedback loops act in a non-linear fashion, across nested scales in biological systems. They can be modeled to act that way in a digital design process as well. This research is an exploration into one such model and its application to architecture: the simple communication between organisms as they affect and are affected by their environments through the use of signal chemicals.
keywords Biology; Cellular Automata; Feedback; Material; Scripting
series ACADIA
last changed 2022/06/07 07:55

_id ecaade2008_081
id ecaade2008_081
authors LaBelle, Guillaum; Nembrini, Julien; Huang , Jeffrey
year 2008
title Simulation-Driven Design System
doi https://doi.org/10.52842/conf.ecaade.2008.469
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 469-476
summary This paper presents a design process efficiently involving parametric design, realistic physical simulation and rapid-prototyping fabrication for contextual shape adaptation. This case study focuses on lighting simulation for the specific problem of solar energy harvesting. Inspired by the phototropic mechanism, the ability of plants to grow according to the availability of light, an innovative design technique is defined, taking its root in the morphogenetic design school [Hensel, 2004].
keywords Parametric,Simulation, Generative Design, CAD, Phototropism
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_926734 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002