CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 273

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ecaade2008_126
id ecaade2008_126
authors Chin, Chi-Ping
year 2008
title Contextual Bricks
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 913-920
doi https://doi.org/10.52842/conf.ecaade.2008.913
summary Based on the importance of human behavior analysis in HCI research, this paper discusses the property of interaction in sending/receiving direction with diverse cases. A unit of contextual bricks was created as research model continuing to discover the possible solution on the problem that how to merge the novel media and technology into our living space invisibly with the exhibition of appropriate information. The prototype of contextual bricks preserved the characteristic of stability with cellular hexagonal structure, and each unit was designed with communicable construction. The people could get the contextual information from other spaces as seeing through the walls. In the future study, the contextual bricks have good applied possibility and developments in each kind of areas.
keywords Context-aware, Ambient Intelligence, Context information interface, Interaction design, Communication design
series eCAADe
email
last changed 2022/06/07 07:55

_id radzjukevich02_paper_eaea2007
id radzjukevich02_paper_eaea2007
authors Radzjukewich, Andrey
year 2008
title The Computer Methods of Construction Spiral Structures
source Proceedings of the 8th European Architectural Endoscopy Association Conference
summary The object of our research is geometric characteristics of spiral structures which are widely spread in nature (cones, sunflower beds…). It is a well-known fact that there is a proportional intercommunication according to the “golden section”. The correlation of the quantity of “right” and “left” spirals ties to have an irrational coefficient of “golden section” through the correlation numbers of 1,618… from Fibbonacci series ( 5/3, 8/5, 13/8, 21/13, 34/21, 55/34 …). When the proportion of “golden section” was found in the natural objects since the middle of the 19-th century (A.Zeizing), there began to appear a lot of hypotheses about some special aesthetic and technological characteristics of this proportion. The proportion of “golden section” became the most important architectural instrument in the first half of the 20-th century. This instrument made it possible to design beautiful and comfortable buildings (Le Corbusier). We tried to find a geometric way of building spiral structures which would be similar to natural ones. We solved this problem with the help of the developed algorythm the geometric characteristics of the cells of which spiral structures are built were investigated. It was found out that the cells of “golden” spiral structures don't have any special characteristics if compare with the cells of other spiral structures. During our work we found some spiral structures which have optimal geometric characteristics. These structures let's call them radial-hexagonal, have maximal area of a cell, though they have minimum perimeter. We also defined the main difference in the growing strategy of animate and inanimate structures. Inanimate structures grow by means of addition external elements. Animate structures grow by means of constant pushing of new elements which appear in the centre towards periphery. The optimal filling of the plane in the process of such growing is possible only by “golden section” of “right” and “left” spirals.
keywords spirals, spiral lattices, a proportion of "gold section”
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id caadria2008_77_session7b_635
id caadria2008_77_session7b_635
authors Loemker, Thorsten M.
year 2008
title In-situ Analyses of Buildings by means of Smart Devices and Location Based Services
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 635-641
doi https://doi.org/10.52842/conf.caadria.2008.635
summary In this research we examined if it might be possible that a client accomplishes an ad-hoc analysis of an existing building with the intention of prospective revitalization. The aim is to give a client who incidentally faces a building the possibility to run an in situ usability simulation. To accomplish this we recommend Location Based Services that can be accessed by common remote sensing devices. These devices should automatically connect to server-based applications, which compare the requirements of the client with the existing building and run remote simulations on concrete further utilization. The newly generated information will then be passed back to the clients’ device. In the paper we address a scenario of a prospective client who visits a city where he hits on an unused building he might be interest in. The client wishes to gain immediate and accurate information if the building is able to meet his demands regarding the space needed for his company. Different techniques investigated, their assets and drawbacks will be described that could accomplish suchlike tasks.
keywords Location Based Services, Smart Environments, Ubiquitous Computing, Optimization
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac20086401
id ijac20086401
authors Maleki, Maryam M.; Woodbury, Robert F.
year 2008
title Reinterpreting Rasmi Domes with Geometric Constraints:A Case of Goal-seeking in Parametric Systems
source International Journal of Architectural Computing vol. 6 - no. 4, 375-395
summary Geometry has long been a generator of architecture. In traditional Persian architecture, Rasmi domes project a drawing onto a predefined 3D geometry. In fact, the word 'rasmi' and the verb for drawing in Persian have the same linguistic root. Projection is readily done in manual drawings or conventional CAD programs. From a constraint perspective, the dome is constrained by the drawing and the 3D geometry. If the latter constraint is replaced by invariance of distance on the original drawing, a class of domes results, but members of this class cannot be computed conventionally. Class members are developable from a planar layout of triangles, which is, in turn, generated by a simple drawing rule. This yields a parametric structure of four parameters. Three determine the initial planar diagram. One determines configuration. Further, domes in the class are mechanisms: they are not fully specified by the constraints and parameters. We develop the geometric constraints representing the location of the defining points of a dome and present a goal-seeking algorithm to solve the constraints within a propagation-based parametric modeling system.
series journal
last changed 2009/03/03 07:48

_id ecaade2008_013
id ecaade2008_013
authors Papanikolaou, Dimitrios
year 2008
title Evaluating Assemblies of Planar Parts Using the Liaison Graph and System Dynamics
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 767-774
doi https://doi.org/10.52842/conf.ecaade.2008.767
summary Current research on design and fabrication of planar part assemblies focuses on generative design methods, leaving analysis and evaluation of assemblability to be studied with empirical methods such as physical mockups. As a consequence, there is little understanding on whether a design is assemblable, or on how much time the assembling process might take. This paper proposes a new formal method to evaluate assemblability of interlocking planar parts that uses Network Analysis to evaluate assembly structure and System Dynamics to evaluate performance of assembling process.
keywords System Dynamics, Network Analysis, assembly, liaison graph, Digital Fabrication
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2008_018
id ecaade2008_018
authors Schindler, Christoph
year 2008
title ZipShape
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 775-782
doi https://doi.org/10.52842/conf.ecaade.2008.775
summary ZipShape is a universal method to fabricate single curved panels from any plain material without molds. The system uses two individually slotted panels that interlock when bent to the predefined curvature. As non-radial curves require individual teeth geometry, the method makes use of automated detailing with corresponding algorithms. ZipShape is a fusion of information processing and material processing based on comparatively simple software technology and standard workshop machinery. With help of case studies, this paper evaluates the method’s claim to be a variable and feasible solution for the realization of non-planar shape.
keywords ZipShape, Digital fabrication, Cold wood bending
series eCAADe
email
last changed 2022/06/07 07:56

_id ijac20076204
id ijac20076204
authors Schlueter, Arno; Bonwetsch, Tobias
year 2008
title Design Rationalization of Irregular Cellular Structures
source International Journal of Architectural Computing vol. 6 - no. 2, pp. 197-211
summary Complex geometries found in nature are increasingly used as images and analogies for the creation of form and space in architectural design. To be able to construct the resulting complex building forms, strategies to handle the resulting production requirements are necessary. In the example of a design project for a Japanese noodle bar, a strategy for the realization of an irregular cellular spatial structure is presented. In order to represent its complex geometry, building principles relating to foam are applied to transform and optimize the design, which is based on hexagonal, cellular compartments defining the different interior spaces. The principles are converted into software code and implemented into a digital design toolbox to be used within a 3D-modelling environment. Utilizing the tools within the redesign process made a rationalization of the cellular structures possible without sacrificing the desired visual irregularity. The toolbox also enables the extraction of the cell geometry to support the generation of production documents. The result is the dramatic reduction of production effort to realize the complex cellular structures by keeping a maximum of design flexibility and desired visual appearance.
series journal
last changed 2008/10/01 21:49

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 5d77
id 5d77
authors Adriane Borda; Neusa Félix; Janice de Freitas Pires; Noélia de Moraes Aguirre.
year 2008
title MODELAGEM GEOMÉTRICA NOS ESTÁGIOS INICIAIS DE APRENDIZAGEM DA PRÁTICA PROJETUAL EM ARQUITETURA. GEOMETRIC MODELING IN THE EARLY STAGES OF LEARNING PRACTICE ARCHITECTURAL DESIGN.
source 12th Iberoamerican Congress of Digital Graphics, SIGRADI, 2008, Havana. SIGRADI, Proceedings of the 12th Iberoamerican Congress of Digital Graphics.. Havana : Ministerio de Educacion Superior, 2008. p. 434-438.
summary This work invests on delimitation of a Geometric Modeling study program directed to students at the initial stages of Architecture. It is considered that the studies promote a qualified control of the form based on recognition of parameters which define it, moreover it also allows the enlargement of the students geometric vocabulary, important to the architectural design activities. In this way, the program advances on the appropriation of new concepts which surround the investigations on architectural design processes, such as the concept of shape grammar. Observing analysis and architectural composition practices based on such concept, contents of geometric modeling which are already being used in the context of post-graduation are identified to be transposed to the graduation context, along with the initial teaching practices of architectural design. The results refer to making the didactic material available, these materials have the objective of building references for the development of design practice which explore the reflection about the processes of creation and composition of architectural form in their geometric aspects.
keywords Architecture, Geometric Modeling, Shape grammar, Teaching/Learning
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:47

_id ijac20086405
id ijac20086405
authors Ahlquist, Sean; Fleischmann, Moritz
year 2008
title Elemental Methods for Integrated Architectures: Experimentation with Design Processes for Cable Net Structures
source International Journal of Architectural Computing vol. 6 - no. 4, 453-475
summary Tension active systems are compelling architectural structures having an intimate connection between structural performance and the arrangement of material. The direct flow of structural forces through the material makes these systems attractive and unique from an aesthetic point of view, but they are a challenge to develop from a design and an engineering perspective. Traditional methods for solving such structural systems rely on both analog modeling techniques and the use of highly advanced engineering software. The complexity and laborious nature of both processes presents a challenge for iterating through design variations. To experiment with the spacemaking capabilities of tension active systems, it is necessary to design methods that can actively couple the digital simulation with the analog methods for building the physical structure. What we propose is a designer-authored process that digitally simulates the behaviors of tension active systems using simple geometric components related to material and structural performance, activated and varied through elemental techniques of scripting. The logics for manufacturing and assembly are to be embedded in the digital generation of form. The intention is to transform what is a highly engineered system into an architectural system where investigation is as much about the determination of space and environment as it is about the arrangement of structure and material.
series journal
last changed 2009/03/03 07:48

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
doi https://doi.org/10.52842/conf.acadia.2008.066
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id sigradi2008_080
id sigradi2008_080
authors Andrés, Roberto
year 2008
title Hybrid Art > Synthesized Architecture
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper investigates possible intersections between some contemporary artistic modalities and architectural practice. At first, it describes and discusses different uses of art in architectural history. Through the analyzes of Le Corbusier’s artistic and architectural practices, it observes the limits of looking at art as only ‘inspiration’ for architectural form and points to the necessity of surpassing this formal approach. More than bringing pictorial ‘inspiration’, art, as a experimental field, can change our architectural procedures and approaches - a much richer and powerful addition to the development of architecture. It discusses then, the confluence of architecture, information and communication technologies. Very commonly present in our contemporary life, not only on the making of architecture – computer drawings and modeling of extravagant buildings – nor in ‘automated rooms’ of the millionaire’s houses. Televisions, telephones and computers leave the walls of our houses “with as many holes as a Swiss cheese”, as Flusser has pointed. The architecture has historically manipulated the way people interact, but this interaction now has been greatly changed by new technologies. Since is inevitable to think the contemporary world without them, it is extreme urgent that architects start dealing with this whole universe in a creative way. Important changes in architecture occur after professionals start to research and experiment with different artistic medias, not limiting their visions to painting and sculpture. The main hypothesis of this paper is that the experiments with new media art can bring the field of architecture closer to information and communication technologies. This confluence can only take form when architects rise questions about technology based interaction and automation during their creative process, embodying these concepts into the architecture repertoire. An educational experience was conducted in 2007 at UFMG Architecture School, in Brazil, with the intention of this activity was to allow students to research creatively with both information technology and architecture. The students’ goal was to create site-specific interventions on the school building, using physical and digital devices. Finally, the paper contextualizes this experience with the discussion above exposed. Concluding with an exposition of the potentialities of some contemporary art modalities (specially the hybrid ones) in qualifying architectural practices.
keywords Architecture; Information and Communication Technologies; Digital Art; Site Specific Art; Architectural Learning.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2008_153
id ecaade2008_153
authors Andrés, Roberto
year 2008
title Hybrid Art > Synthesized Architecture
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 267-274
doi https://doi.org/10.52842/conf.ecaade.2008.267
summary This paper investigates possible intersections between some contemporary artistic modalities and architectural practice. It observes the limits of looking at art as only ‘inspiration’ for architectural form and points to the necessity of surpassing this formal approach. It discusses then, the confluence of architecture, information and communication technologies. The architecture has historically mediated the way people interact, but this interaction now has been greatly changed by new technologies. Then, it analyses the hypothesis that the experiments with new media art can bring the field of architecture closer to information and communication technologies. An educational experience is presented, aiming to verify some points discussed on the text. Concluding with an exposition of the potentialities of some hybrid art modalities in qualifying architectural practices.
keywords Architecture, Information and Communication Technologies, Digital Art, Site Specific Art, Architectural Learning
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id cdc2008_329
id cdc2008_329
authors Araya, Sergio
year 2008
title Algorithmic Transparency
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 329-340
summary This paper describes the procedures developed in the creation of an innovative technique to design and manufacture composite materials with transparency and translucency properties. The long term objective of this research is to develop a method to design and fabricate architectural elements. The immediate objective is to develop the methodology and procedural techniques to design and manufacture a composite material with controlled non homogeneous transparency properties. A secondary objective is to explore different levels of “embedded behavior” or responsiveness by using these techniques to combine different physical material properties on new designed “smarter” and “responsive” composite materials.
email
last changed 2009/01/07 08:05

_id sigradi2008_103
id sigradi2008_103
authors Baltazar, Ana Paula; Maria Lucia Malard, Silke Kapp, Pedro Schultz
year 2008
title From physical models to immersive collaborative environments: testing the best way for homeless people to visualise and negotiate spaces
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper describes an experiment to investigate the best way for lay people to use representation to visualise and negotiate space. It was motivated by our observations in workshops for digital inclusion in the context of a housing project for a homeless association. Computers were used to make it easier for the community to understand and change the spaces in real time. The first workshops proved that our approach was efficient as an exercise but not certainly effective concerning the understanding of spatial qualities. So we have designed an experiment to compare the usability of different media in participatory design processes. For that we have adapted the ‘Usability’ methodology, which is fully described in the paper. We started with three main questions. The first concerned the effectiveness of different media to represent spatial quality; the second concerned the best way for novices to approach space, whether by refurbishing a pre-existing space or by starting from the scratch; and the third concerned the effectiveness of negotiation by means of discourse and by means of or action. We also had two main hypothesis: one coming from research on digital environments and stereo visualisation, indicating that the more people feel immersed in the represented environment the more they are able to correlate it with physical space; and the other coming from our own observations in the participatory design workshops, in which the collective decision-making was manipulated by those people with more advanced communication skills who use their ability in an authoritative way regardless of the relevance of what they have to say. This paper describes the whole experiment, which was an exercise of spatial negotiation in 5 versions. In the first version we provided fixed digital views of a room in plan and axonometry; for another two versions we provided a physical model of the room in 1:10 scale, with some pieces of the existing furniture in different scales. This was done to check if people were just playing with a puzzle or actually grasping the correspondence between representation and the object or the space represented. One version proposes refurbishment and the other starts from the scratch. And the last two versions repeated the same task made with the physical model, but this time using a 3D interactive digital model. People were required not only to organise the furniture in the space but also to build a full scale cardboard structure and organise the real furniture reproducing their proposed model. Their comments on the spaces they had built confronted with what they had imaged when working with the model has enabled us to compare the different models, as also the different ways of negotiating spaces. This paper describes this experiment in detail concluding that 3D digital interactive models are far more effective than physical models and 2D drawings; when negotiation happens by means of action it provides more creative results than when the discoursive practice prevails; people are more creative when they start something from scratch, though they spend more time. The results of this experiment led us to formulate a new hypothesis leading to the development of an immersive collaborative environment using stereoscopy.
keywords Visualisation, negotiation, immersive environment, digital interfaces, homeless people
series SIGRADI
email
last changed 2016/03/10 09:47

_id barchugova02_paper_eaea2007
id barchugova02_paper_eaea2007
authors Barchugova, Helena; Nataliya Rochegova
year 2008
title Visualization and Animation in the Study of Ivan Leonidov's Creative Heritage
source Proceedings of the 8th European Architectural Endoscopy Association Conference
summary The investigation was made by the example of the park stairway in "Narkomtyazhprom" sanatorium in Kislovodsk. The results of this investigation are presented in the form of a film combining video materials of the real object with animated images that demonstrate methods of dynamic formation in design practice of Ivan Leonidov.
keywords visualization, animation, design philosophy of Leonidov, dynamic form creation.
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id ecaade2008_151
id ecaade2008_151
authors Barelkowski, Robert
year 2008
title Web-based Support for Social Participation and Education in Planning Procedures
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 823-828
doi https://doi.org/10.52842/conf.ecaade.2008.823
summary The paper is intended to present the methodological structure of web-based mechanisms related to planning procedures, with particular focus on social participation. The tools provide a link between planners and local community members, allow the acquisition of different sets of data, provide detailed information on the environment and planned transformations, serve as a source of detailed information on the procedure, and last but not least play an educational role, which contributes greatly to the understanding of sustainability, cultural sensitivity, environmental issues, planning concerns on a wider scale. Web-related technology provides many opportunities to reach for a wider social participation and simultaneously to receive more representative feedback from the local community. The article will discuss in detail some results of the implementation of the Citizen project – a web-based platform supporting the social participation.
keywords Spatial planning, social participation, web-based tools, web-based participation, Citizen project
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2008_42_session4b_343
id caadria2008_42_session4b_343
authors Barrios, Carlos; Damien Alomar
year 2008
title Computing with textile blocks: Symmetry Studies on Frank Lloyd Wright’s Textile Block Design Patterns
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 343-349
doi https://doi.org/10.52842/conf.caadria.2008.343
summary This research focused on generating alternative designs from the textile blocks California Houses of Frank Lloyd Wright based on regular wallpaper symmetry patterns. A computational framework was developed that generates the designs of the original textile blocks in combination with all possible wallpaper symmetry patterns. This computational framework allowed for the creation of the catalog of possible regular patterns. The development of the framework allowed for a deeper understanding of the symmetrical relationships of the blocks and the wallpaper patterns created by Frank Lloyd Wright and a large collection of new ones.
keywords Symmetry Studies, Design Patterns, Blocks Computation, Frank Lloyd Wright, Textile Blocks
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 13HOMELOGIN (you are user _anon_598544 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002