CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 488

_id acadia08_448
id acadia08_448
authors Alfaris, Anas; Riccardo Merello
year 2008
title The Generative Multi-Performance Design System
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 448-457
doi https://doi.org/10.52842/conf.acadia.2008.448
summary This paper proposes a framework for an integrated computational design system. This design system builds on the strengths inherent in both generative synthesis models and multi-performance analysis and optimization. Four main design mechanisms and their mathematical models are discussed and their integration proposed. The process of building the design system begins by a top-down decomposition of a design concept. The different disciplines involved are decomposed into modules that simulate the respective design mechanisms. Subsequently through a bottom-up approach, the design modules are connected into a data flow network that includes clusters and subsystems. This network forms the Generative Multi-Performance Design System. This integrated system acts as a holistic structured functional unit that searches the design space for satisfactory solutions. The proposed design system is domain independent. Its potential will be demonstrated through a pilot project in which a multi-performance space planning problem is considered. The results are then discussed and analyzed.
keywords Analysis; Behavior; Generative; Optimization; Performance
series ACADIA
type normal paper
last changed 2022/06/07 07:54

_id sigradi2016_450
id sigradi2016_450
authors Araujo, André L.; Celani, Gabriela
year 2016
title Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.710-714
summary Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance-producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. The system developed allows the structural analysis of structured automatically generated by a generative system. However, some efficient solutions from the structural performance point of view do not necessarily represent a rational solution from the feasibility aspects.
keywords Structural design; Complex structures; Bottom-up design approach
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia08_152
id acadia08_152
authors Biloria, Nimish
year 2008
title Morphogenomic Urban and Architectural Systems: An Investigation into Informatics Oriented Evolution of Form: The Case of the A2 Highway
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 152-157
doi https://doi.org/10.52842/conf.acadia.2008.152
summary This research paper exemplifies upon a novel information integrated generative design method: Morphogenomics, being experimented with at Hyperbody, TU Delft. Morphogenomics, a relatively new research area, which deals with the intricacies of morphological informatics. This paper furthermore discusses an ongoing Morphogenmoics oriented design-research case: the development of a Distributed Network-city along the A2 highway, Netherlands. The A2 highway, development is a live project seeking urban development on either side of this busy highway. Hyperbody, during the course of this research initiative developed a series of real-time interactive computational tools focusing upon the collaborative contextual generation of a performative urban and architectural morphology for the A2 highway. This research paper elaborates upon these computational techniques based Morphogenomic approach and its resultant outcomes.
keywords Computation; Evolution; Flocking; Information; Morphogenesis
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
doi https://doi.org/10.52842/conf.acadia.2008.072
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2022/06/07 07:50

_id ijac20076101
id ijac20076101
authors Oxman, Rivka
year 2008
title Performance-based Design: Current Practices and Research Issues
source International Journal of Architectural Computing vol. 6 - no. 1, pp. 1-17
summary In view of current developments in the theory and technology of digital design, potential novel directions for environments that support performance-based design are beginning to emerge. The field of performance-based design is defined through an analysis of current work in the field. Various models of performance-based architectural design are presented and discussed. On the basis of this analysis, key concepts and issues in the application of performance-based design in architecture are defined and certain research directions for the development of new approaches are presented. Finally we propose a new approach termed: Performative Design. Performative Design suggests that in creating simulation environments for performance-based architectural design both generative and evaluative capabilities can be integrated within performance-based simulations. The potential of performance-based simulation as a model of performance-based design is explored through a case study from an experimental digital design studio. Implication of this work on future research directions in the field is explicated.
series journal
last changed 2008/06/18 08:12

_id acadia08_214
id acadia08_214
authors Schlueter, Arno; Frank Thesseling
year 2008
title Balancing Design and Performance in Building Retrofitting: A Case Study Based on Parametric Modeling
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 214-221
doi https://doi.org/10.52842/conf.acadia.2008.214
summary Retrofitting the existing building stock will become one of the key fields of action for architects in the future. Due to the raised awareness of CO2 emissions related to the energy consumption of buildings, architects have to increasingly consider parameters influencing the energy performance of their retrofit designs. This is a complex task especially in the early design stages as multiple dependencies between building form, construction and technical systems influence overall energy performance. The inability to cope with this complexity often leads to simple solutions such as the application of massive insulation on the outside, neglecting aesthetic expression and design flexibility. Digital models storing multidisciplinary building information make it possible to include performance parameters throughout the architectural design process. In addition to the geometric parameters constituting the form, semantic and topological parameters define building element properties and their dependencies. This offers an integrated view of the building. We present a case study utilizing mulit-parametric façade elements within a building information model for an integrated design approach. The case study is based on a retrofit project of a multi-family house with very poor energy performance. Within a design workshop a parametric building model was used for the development of the designs. An integrated analysis tool allowed an immediate performance assessment without importing or exporting building data. The students were able to freely define geometric and performance parameters to develop their design solution. Balancing between formal expression and energy performance lead to integrated design sketches, resulting in surprising solutions for the given design task.
keywords BIM; Integrative; Parametric; Performance; Sustainability
series ACADIA
last changed 2022/06/07 07:57

_id acadia08_354
id acadia08_354
authors Vanucci, Marco
year 2008
title Pluri-Potential Branching System
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 354-363
doi https://doi.org/10.52842/conf.acadia.2008.354
summary In contemporary construction industry, parametric softwares are often employed in design processes of rationalization and post-rationalization where, given a certain project, the answer to specific problems is required to actualize the desired shape [problem-solving approach]. ¶ This paper outlines a research project intended to develop a generative approach to digital design where the employment of parametric and algorithmic tools provide the possibility to set up integral multi-parametric systems; organizational as well as geometrical and structural aspects are investigated and, in parallel, they inform each other. ¶ The paper unfolds through constant reference to natural systems and, more specifically, develops the notion of pluri-potential systems deriving principle from the interaction between biological processes and computation. ¶ The results address the shift from mono-parametric problem-solving approaches to a generative problem-caring process where the integration of multiple system logics contribute to the development of a virtual pluri-potential set up. ¶ Finally, the paper explore the generative interdependency between structural, geometrical, organizational and computational logics of a system studying the manifold potentials of branching structures in the attempt to explore the emergent synergy between biological processes, computation and architectural design.
keywords Branching; Evolution; Generative; Open Systems; Parametric
series ACADIA
last changed 2022/06/07 07:58

_id caadria2008_13_session2a_110
id caadria2008_13_session2a_110
authors Wiboonma, Wiboonsiri; Pinyo Jinuntuya, Pizzanu Kanongchaiyos
year 2008
title Multi-Directional Interrelationship Approach For Hybrid Interactive Design Tool For High-Rise Building
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 110-116
doi https://doi.org/10.52842/conf.caadria.2008.110
summary The role of computers in architectural design is constantly increasing, as may be seen in the efforts to develop generative design tools which are focused on helping create innovative results. Some of these are generated by sets of rules, constraints, theoretical models and algorithms, for which the computer is used as the implementing tool. This research introduces a new approach in hybrid interactive design tools, which are focused on the clustered and hectic urban context in the modern age, meaning that architecture is continuously developing vertically, in high-rise buildings. The main point in this research will be the abandoned gap in connecting the internal functions and external appearance. This is another main point which cannot be ignored in designing high rises, which ideally contain both internal and external perceptive aesthetics. The scope of this research will cover three aspects: Function, Perception, and Proportion. Therefore, the work flow of this design tool will be a multi-directional interrelationship between these three steps: 1) internal function and external form generation by various types of constraints, 2) internal function and external form inspection, and 3) internal function and external form modification by the users.
keywords Generative Design, Interactive Design, High-Rise Building, Multi-Directional Interrelationship, MAX Script
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2008_3_session1a_029
id caadria2008_3_session1a_029
authors Ambrose, Michael A., Carl Lostritto, Luc Wilson
year 2008
title Animate education Early Design Education Pedagogy
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 29-35
doi https://doi.org/10.52842/conf.caadria.2008.029
summary This paper presents a novel approach to the introduction and use of animation and motion graphics in foundation design education. Design inquiry and understanding as generated from, and translated by, movement is the focus. This work explores animation as a design methodology in the first weeks of architectural education. The proposed design exercise discussed here will probe the concept/context and spatial/visual literacy of the learned sense of space-time in architectural design education and representation. Here the digital application of animation and motion graphics is intended to be process driven to encourage students to find an attitude about solutions rather than a solution to the design project. The intention is to examine the relationship between form and space through a structured exploration of movement within a kit-of-parts design project that explores a three-dimensional spatial construct. Animation as a design method poses unique potentials and pitfalls. Animation and motion graphics, as a collection of instances, is both questioned and exaggerated. This project creates a threshold experience of learning that puts in motion an exploration of integrated digital process and design product.
keywords Education, design theory, design studies, animation
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2008_178
id ecaade2008_178
authors Kolarevic, Branko
year 2008
title Architecture in the Post-Digital Age: Towards Integrative Design
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 653-658
doi https://doi.org/10.52842/conf.ecaade.2008.653
summary For many, integration within the building industry is an inevitable outcome as architecture, engineering, and construction enter a ‘post-digital’ age. This paper argues that the challenge is to avoid closed systems of integration and to keep integrative tendencies as open as possible, conceptually and operationally. An alternative vision of integrated design is proposed that is more open, fluid, pliable, and opportunistic in its search of collaborative alliances and agendas. This alternative approach is referred to as integrative design, in which methods, processes, and techniques are discovered, appropriated, adapted, and altered from ‘elsewhere’, and often ‘digitally’ pursued.
keywords Integrated design, integrative design
series eCAADe
email
last changed 2022/06/07 07:51

_id cdc2008_149
id cdc2008_149
authors Kolarevic, Branko
year 2008
title Post-Digital Architecture: Towards Integrative Design
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 149-156
summary In this paper, an alternative vision of integrated design is proposed that is more open, fluid, pliable, and opportunistic in its search of collaborative alliances and agendas. This alternative approach is referred to as integrative design, in which methods, processes, and techniques are discovered, appropriated, adapted, and altered from “elsewhere,” and often “digitally” pursued. The designers who engage design as a broadly integrative endeavor fluidly navigate across different disciplinary territories, and deploy algorithmic thinking, biomimicry, computation, digital fabrication, material exploration, and/or performance analyses to discover and create a process, technique, or a product that is qualitatively new.
last changed 2009/01/07 08:05

_id ddss2008-40
id ddss2008-40
authors Marin, Ph.; J.C. Bignon, H. Lequay
year 2008
title Integral evolutionary design, integrated to early stageof architectural design processGenerative exploration of architectural envelope responding tosolar passive qualities
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary This paper tackles the exploration of generative digital tools in the field of architectural design. Evolutionary mechanisms are expected to help the designer and to support his creativity. Our purpose is to implement a digital tool based on a genetic algorithm, which uses environmental parameters and human interplay to evolve an architectural form. The analysis of design processes and CAD use lead us to mark a transformation of design process at a cognitive level.
keywords Genetic algorithm, generative architectural design process, environmental parameters
series DDSS
last changed 2008/09/01 17:06

_id sigradi2008_166
id sigradi2008_166
authors Papanikolaou, Dimitris
year 2008
title Digital Fabrication Production System Theory: Towards an Integrated Environment for Design and Production of Assemblies
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary A Digital Fabrication Production System (DFPS) is a concept describing a set of processes, tools, and resources that will be able to produce an artifact according to a design, fast, cheap, and easy, independently of location. A DFPS project is a complex assembly of custom parts that is delivered by a network of fabrication and assembly processes. This network is called the value chain. The workflow concept of a DFPS is the following: begin design process with a custom geometric form; decompose it into constructible parts; send the part files for fabrication to various locations; transport all parts at the construction site at the right time; finally, assemble the final artifact. Conceptually it means that based on a well structured value chain we could build anything we want, at anyplace, at controllable cost and quality. The goals of a DFPS are the following: custom shapes, controllable lead time, controllable quality, controllable cost, easiness of fabrication, and easiness of assembly. Simply stated this means to build any form, anywhere, accurately, cheap, fast, and easy. Unfortunately, the reality with current Digital Fabrication (DF) projects is rather disappointing: They take more time than what was planned, they get more expensive than what was expected, they involve great risk and uncertainty, and finally they are too complex to plan, understand, and manage. Moreover, most of these problems are discovered during production when it is already late for correction. However, there is currently no systematic approach to evaluate difficulty of production of DF projects in Architecture. Most of current risk assessment methods are based on experience gathered from previous similar cases. But it is the premise of mass customization that projects can be radically different. Assembly incompatibilities are currently addressed by building physical mockups. But physical mockups cause a significant loss in both time and cost. All these problems suggest that an introduction of a DFPS for mass customization in architecture needs first an integrated theory of assembly and management control. Evaluating feasibility of a DF project has two main problems: first, how to evaluate assemblability of the design; second, how to evaluate performance of the value chain. Assemblability is a system’s structure problem, while performance is a system’s dynamics problem. Structure of systems has been studied in the field of Systems Engineering by Network Analysis methods such as the Design Structure Matrix (DSM) (Steward 1981), and the liaison graph (Whitney 2004), while dynamics of systems have been studied by System Dynamics (Forrester 1961). Can we define a formal method to evaluate the difficulty of production of an artifact if we know the artifact’s design and the production system’s structure? This paper formulates Attribute Process Methodology (APM); a method for assessing feasibility of a DFPS project that combines Network Analysis to evaluate assemblability of the design with System Dynamics to evaluate performance of the value chain.
keywords Digital Fabrication, Production System, System Dynamics, Network Analysis, Assembly
series SIGRADI
email
last changed 2016/03/10 09:57

_id caadria2008_8_session1b_068
id caadria2008_8_session1b_068
authors Schoch, Odilo and Peter Russell
year 2008
title Kanban as a Supporting Tool for the SUSTAINABLE Design and Operation of Smart Buildings The potential of the Toyota Production System in Architecture
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 68-74
doi https://doi.org/10.52842/conf.caadria.2008.068
summary This paper describes the translation of the process management tool ‘Kanban’ and its adjacent Toyota Production System into an architectural design supporting tool in the context of computer integrated buildings. The triggering question is: ‘How can architects handle requirements and services of ubiquitous computing in relation to their cursory knowledge about networked services and its unpredictable future development?’. The paper develops a system called ‘Ubicomp-Kanban’ based on the characteristics Toyota Production System. It is suitable for both design and operation of binary networked services in built environment in selected architectural scales and selected functions. The application of the system allows more precise planning and resource optimized operation of academic buildings. The paper does not intend to set up a new approach for building information models (BIM).
keywords pervasive computing, smart buildings, resource optimization, simulation, sustainability, Toyota Production System, kaizen, kanban
series CAADRIA
email
last changed 2022/06/07 07:57

_id ddss2008-46
id ddss2008-46
authors Sharma, Shrikant B. and Vincent Tabak
year 2008
title Rapid Agent Based Simulation of People Flow forDesign of SpacesAnalysis, Design and Optimisation
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary This paper presents a novel static-dynamic network based people flow simulation model applied to design optimisation of circulation spaces within buildings and urban areas. In the current state of art the majority of existing people flow simulation models are driven by analysis rather than design. This is fine for simpler, evacuation type scenarios where a single or a few analyses runs are sufficient to determine the evacuation time. For more complex scenarios such as crowd circulation with complex multi-directional flow, one is as interested in the sensitivity of various design and stochastic behavioural parameters, so the rapid modelling simulations together with design capability become important. This paper presents a simplified network based people flow model that enables rapid simulations and therefore iterative design optimization of circulation space. The work integrates the techniques of graph-theory based network analysis with an origin-destination matrix model of crowd flow, to provide a rapid, parametric model. The resulting model can be analysed in a static as well as dynamic state. In the static state, the model analyses space based on connectivity of nodes, superimposed with the origin-destination matrix of population to provide valuable information such as footfalls, density maps, as well as quasi-static parameters such as mean flow rates. In the dynamic state, the model allows time-dependent analysis of flow using a detailed agent based simulation that also incorporates dynamic route-choice modelling, agent behaviours and interaction, and stochastic variations. The paper presents the integrated modelling technique and its implementation into simulation software SMART Move.
keywords People Flow, Pedestrian, Agent Based Simulation, Evacuation, Network, Optimisation
series DDSS
last changed 2008/09/01 17:06

_id ecaade2008_059
id ecaade2008_059
authors Wang, Linan; Szalapaj, Peter
year 2008
title An Interactive Cross-representational Data Modelling Approach for Early Stage Design Information
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 185-194
doi https://doi.org/10.52842/conf.ecaade.2008.185
summary This presents a systematic approach to the organisation of early stage design information, and the associated interactions among various types of representation. Scene-level representations are introduced as the complement of traditional object-level representations in an integrated information system. A cross-representational approach is proposed. The advantage of this approach is in the support of both user-definable representations, and cross-representational manipulations, including organisational transformation, information filtering, information aggregation, and simulations, which are essential for designers to dig into raw data. A prototype program called NetworkBuilder is being developed in order to explore the approach.
keywords Scene-level representation, attribute-based network model, declarative approach, cross-representational approach
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2008_50_session5a_409
id caadria2008_50_session5a_409
authors Wessel, Ginette M.; Eric J. Sauda, Remco Chang
year 2008
title Urban Visualization: Urban Design and Computer Visualization
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 409-416
doi https://doi.org/10.52842/conf.caadria.2008.409
summary Historically, the city represents not just a collection of buildings, but also the concrete cosmology of the world. The importance of geometry in this context is that one can be assured that one’s understanding of the form of the city will correspond to meaning. It is this reading that is the canonical visualization method of the city form. But contemporary urban designers are confronted by cities with overlapping systems of movement and information that has made the reading of geometry insufficient for an understanding of the city. Our interdisciplinary team of researchers has been studying issues related to urban visualization from the perspectives of urban design and computer visualization. Together, we have published work demonstrating how very large and disparate data sets can be visualized and integrated in unique ways. Building on this existing work that connects the two disciplines, this paper presents a survey of six urban design methodologies that may be useful for visualization. Each approach is described through a brief history, a conceptual overview and a diagrammatic exegesis. The conclusion presents an overview of the complementary natures of the discourses in urban design and computer visualization and a prospectus for application of the identified methodologies to computer urban visualization. We conclude that urban theories can inform urban visualization both as a method of informing generation and run-time simplification of 3D geometric modeling and in managing information visualization overlay issues for the very large, over-lapping data sets.
keywords Visualization: urbanism
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_983877 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002