CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id cdc2008_091
id cdc2008_091
authors Neumann, Oliver
year 2008
title Digitally Mediated Regional Building Cultures
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 91-98
summary Designs are complex energy and material systems and products of diverse cultural, economic, and environmental conditions that engage with their extended context. This approach relates architecture to the discourse on complexity. The design research described in this paper introduces an extended definition of ecology that expands the scope of design discourse beyond the environmental performance of materials and types of construction to broader cultural considerations. Parallel to enabling rich formal explorations, digital modeling and fabrication tools provide a basis for engaging with complex ecologies within which design and building exist. Innovative design applications of digital media emphasize interdependencies between new design methods and their particular context in material science, economy, and culture. In British Columbia, influences of fabrication and building technology are evident in the development of a regional cultural identity that is characterized by wood construction. While embracing digital technology as a key to future development and geographic identity, three collaborative digital wood fabrication projects illustrate distinctions between concepts of complexity and responsiveness and their application in design and construction.
email
last changed 2009/01/07 08:05

_id caadria2010_031
id caadria2010_031
authors Burke, A.; B. Coorey, D. Hill and J. McDermott
year 2010
title Urban micro-informatics: a test case for high-resolution urban modelling through aggregating public information sources
doi https://doi.org/10.52842/conf.caadria.2010.327
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 327-336
summary Our contention is that the city is a rich collection of urban micro-ecologies in continuous formation that include information types outside the traditional boundaries of urban design, city planning, and architecture and their native data fields. This paper discusses working with non-standard urban data types of a highly granular nature, and the analytical possibilities and technical issues associated with their aggregation, through a post professional masters level research studio project run in 2008. Opportunities for novel urban analysis arising from this process are discussed in the context of typical urban planning and analysis systems and locative media practices. This research bought to light specific technical and conceptual issues arising from the combination of processes including sources of data, data collection methods, data formatting, aggregating and visualisation. The range and nature of publicly available information and its value in an urban analysis context is also explored, linking collective information sites such as Pachube, to local environmental analysis and sensor webs. These are discussed in this paper, toward determining the possibilities for novel understandings of the city from a user centric, real-time urban perspective.
keywords Urban; informatics; processing; ubicomp; visualisation
series CAADRIA
email
last changed 2022/06/07 07:54

_id cdc2008_137
id cdc2008_137
authors Cardoso, Daniel
year 2008
title Certain assumptions in Digital Design Culture: Design and the Automated Utopia
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 137-148
summary Much of the research efforts in computational design for Architecture today aim to automate or bypass the production of construction documents as a means of freeing designers from the sticky and inconvenient contingencies of physical matter. This approach has yielded promising questions and applications, but is based on two related assumptions that often go unnoticed and that I wish to confront: 1. Designers are more creative if the simulations they rely on engage only with the superficial aspects of the objects they design (rather than with their structural and material-specific behaviors) and 2. The symbolic 3-D environments available in current design software are the ideal media for design because of their free nature as modeling spaces. These two assumptions are discussed both as cultural traits and in their relation to digital design technologies. The work presented is a step towards the far-sighted goal of answering the question: how can computation enable new kinds of dialogue between designer, design media and construction in a design process? In concrete, this paper proposes a critical framework for discussing contemporary digital design practices as a continuity –rather than as a rupture- of a long-standing tradition in architecture of separating design and construction.
email
last changed 2009/01/07 08:05

_id ecaade2015_265
id ecaade2015_265
authors Hosey, Shannon; Beorkrem, Christopher, Damiano, Ashley, Lopez, Rafael and McCall, Marlena
year 2015
title Digital Design for Disassembly
doi https://doi.org/10.52842/conf.ecaade.2015.2.371
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 371-382
summary The construction and building sector is now widely known to be one of the biggest energy consumers, carbon emitters, and creators of waste. Some architectural agendas for sustainability focus on energy efficiency of buildings that minimize their energy intake during their lifetime - through the use of more efficient mechanical systems or more insulative wall systems. One issue with these sustainability models is that they often ignore the hierarchy of energy within architectural design. The focus on the efficiency is but one aspect or system of the building assembly, when compared to the effectiveness of the whole, which often leads to ad-hoc ecology and results in the all too familiar “law of unintended consequences” (Merton, 1936). As soon as adhesive is used to connect two materials, a piece of trash is created. If designers treat material as energy, and want to use energy responsibly, they can prolong the lifetime of building material by designing for disassembly. By changing the nature of the physical relationship between materials, buildings can be reconfigured and repurposed all the while keeping materials out of a landfill. The use of smart joinery to create building assemblies which can be disassembled, has a milieu of new possibilities created through the use of digital manufacturing equipment. These tools afford designers and manufacturers the ability to create individual joints of a variety of types, which perform as well or better than conventional systems. The concept of design for disassembly is a recognizable goal of industrial design and manufacturing, but for Architecture it remains a novel approach. A classic example is Kieran Timberlake's Loblolly House, which employed material assemblies “that are detailed for on-site assembly as well as future disassembly and redeployment” (Flat, Inc, 2008). The use of nearly ubiquitous digital manufacturing tools helps designers create highly functional, precise and effective methods of connection which afford a building to be taken apart and reused or reassembled into alternative configurations or for alternative uses. This paper will survey alternative energy strategies made available through joinery using digital manufacturing and design methods, and will evaluate these strategies in their ability to create diassemblable materials which therefore use less energy - or minimize the entropy of energy over the life-cycle of the material.
wos WOS:000372316000043
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4075520a-6fe7-11e5-bcc8-f7d564ea25ed
last changed 2022/06/07 07:50

_id acadia08_278
id acadia08_278
authors Paz Gutierrez, Maria
year 2008
title Material Bio-Intelligibility
doi https://doi.org/10.52842/conf.acadia.2008.278
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 278-285
summary Through the formation of bio-chemical information networks natural materials possess efficient processes of self-organization, adaptability, regeneration and decomposition. This performative excellence has lead science to draw behavioral models from nature implementing biomimmicry (Benyus 1998) in the pursuit of material systems optimization. Design disciplines influenced by this course are integrating living organisms as models of efficiency through bionic systems ever more into their discourse. Architecture, influenced by this tendency, is becoming progressively more aware of the vast benefits that biomimetics can yield particularly in the development of ecologically sensitive systems. Yet, the emerging incorporation of bionics into architecture is differing largely to that within the sciences by centering almost exclusively in form (geometrical pattern) generation. This paper analyzes a rising material design research methodology implementing biomimetics: matter-form parametrics based on bio-physical properties’ data. Specific study of the incorporation of broad-scalar scientific imaging into the formulation of explorative parametric grammar for the development of material systems is analyzed through a bio-synthetic polymer based wall system (SugarWall, Gensler+Gutierrez 2006b). The incorporation of broad scalar imaging and material interdependencies is propelling the emergence of new programming tactics that will affect bio-material systems architectural research.
keywords Behavior; Biomimetics; Material; System; Visualization
series ACADIA
last changed 2022/06/07 07:59

_id acadia08_142
id acadia08_142
authors Sprecher, Aaron; Paul Kalnitz
year 2008
title Degrees and Switches
doi https://doi.org/10.52842/conf.acadia.2008.142
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 142-151
summary In recent years, evolutionary biology has been the focus of post-Darwinist theories superseding the mere notion of variation with a concept called evolutionary development. The theory of evolutionary development, commonly referred to as evo-devo, follows a series of observations on the nature of organic developments and natural morphologies. Its main contribution rests on an evolutionary model that considers the similarities of genetic material forming organisms and their differences in morphological development due to switching mechanisms between the assigned genes. As observed by the American biologist Sean Carroll, evolution follows regulatory sequences of selector genes that are similar and can be found across various species of insects, plants and animals. ¶ This observation represents a counter-proposal to the old-modern evolutionary theories that looked at processes of adaptation as a function of the emergence of new genes. Evo-devo, on the contrary, recognizes that morphological differences are triggered by recombinatory switches that re-arrange genes in manifold ways to produce numerous characteristics of adaptation. ¶ From a design point of view, evo-devo has tremendous implications because it suggests that generative design protocols may induce sets of similar operations, yet stimulate a wide range of morphologies according to their sequential arrangements and activities. These generative design strategies include, among others, computational methods such as structural shape annealing and object-oriented analysis and design. While these methods are now integrating computing design practices, it is here proposed to review these two computational design methods in the context of three research projects.
keywords Algorithm; Evolution; Genetic; Object-Oriented; Stochastic
series ACADIA
last changed 2022/06/07 07:56

_id acadia08_158
id acadia08_158
authors Hight, Christopher; Natalia Beard; Michael Robinson
year 2008
title Hydrauli_City: Urban Design, Infrastructure, Ecology
doi https://doi.org/10.52842/conf.acadia.2008.158
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 158-165
summary The Hydrauli_city project was commissioned by the Harris County Flood Control District, Brays Bayou Partnership and the Rice School of Architecture to research the transformation of one of the 21 main Bayous in Houston. The project seems perfectly aligned with the theme of the issue because it examines the relationship between infrastructure, risk and urban design, and does so by attempting to leverage diverse time scales and scales of intervention into the maintenance of this infrastructure, rethinking the legacy of its top-down 20th century planning logics. Moreover, it raises key questions about new agencies and sites that may be available to architects that seek to engage the political ecologies of the contemporary metropolis. Through research on the hydraulic urbanism of Houston and through three speculative design proposals, Hydrauli_city presents research about transforming Brays Bayou. The project attempts to provide a figure for and foster the new forms of collectives and networks required to transform the urban condition of Houston without resorting to unrealistic top-down planning infrastructures. We located several scales and time-frames of operations, from micro-scaled interventions derived from ongoing maintenance of the bayous to larger scale transformations now possible due to the programs to reduce the risk of flooding in the bayou’s watershed. Hydrauli_city maps the confluences of interests and agencies invested in Brays Bayou at this crucial moment in its history, and offers proposals of bold new civic spaces for the Green Century. The project will be disseminated via an interactive website and a series of public presentations to raise awareness and spark conversation. Flood risk management is a hybrid phenomenon, at once the object of scientific knowledge, engineering practice, and political and economic forces, positioning the architect in a prime-position to intervene.
keywords Infrastructure; Mapping; Morphogenesis; System; Urbanism
series ACADIA
last changed 2022/06/07 07:50

_id 5d77
id 5d77
authors Adriane Borda; Neusa Félix; Janice de Freitas Pires; Noélia de Moraes Aguirre.
year 2008
title MODELAGEM GEOMÉTRICA NOS ESTÁGIOS INICIAIS DE APRENDIZAGEM DA PRÁTICA PROJETUAL EM ARQUITETURA. GEOMETRIC MODELING IN THE EARLY STAGES OF LEARNING PRACTICE ARCHITECTURAL DESIGN.
source 12th Iberoamerican Congress of Digital Graphics, SIGRADI, 2008, Havana. SIGRADI, Proceedings of the 12th Iberoamerican Congress of Digital Graphics.. Havana : Ministerio de Educacion Superior, 2008. p. 434-438.
summary This work invests on delimitation of a Geometric Modeling study program directed to students at the initial stages of Architecture. It is considered that the studies promote a qualified control of the form based on recognition of parameters which define it, moreover it also allows the enlargement of the students geometric vocabulary, important to the architectural design activities. In this way, the program advances on the appropriation of new concepts which surround the investigations on architectural design processes, such as the concept of shape grammar. Observing analysis and architectural composition practices based on such concept, contents of geometric modeling which are already being used in the context of post-graduation are identified to be transposed to the graduation context, along with the initial teaching practices of architectural design. The results refer to making the didactic material available, these materials have the objective of building references for the development of design practice which explore the reflection about the processes of creation and composition of architectural form in their geometric aspects.
keywords Architecture, Geometric Modeling, Shape grammar, Teaching/Learning
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:47

_id ijac20086405
id ijac20086405
authors Ahlquist, Sean; Fleischmann, Moritz
year 2008
title Elemental Methods for Integrated Architectures: Experimentation with Design Processes for Cable Net Structures
source International Journal of Architectural Computing vol. 6 - no. 4, 453-475
summary Tension active systems are compelling architectural structures having an intimate connection between structural performance and the arrangement of material. The direct flow of structural forces through the material makes these systems attractive and unique from an aesthetic point of view, but they are a challenge to develop from a design and an engineering perspective. Traditional methods for solving such structural systems rely on both analog modeling techniques and the use of highly advanced engineering software. The complexity and laborious nature of both processes presents a challenge for iterating through design variations. To experiment with the spacemaking capabilities of tension active systems, it is necessary to design methods that can actively couple the digital simulation with the analog methods for building the physical structure. What we propose is a designer-authored process that digitally simulates the behaviors of tension active systems using simple geometric components related to material and structural performance, activated and varied through elemental techniques of scripting. The logics for manufacturing and assembly are to be embedded in the digital generation of form. The intention is to transform what is a highly engineered system into an architectural system where investigation is as much about the determination of space and environment as it is about the arrangement of structure and material.
series journal
last changed 2009/03/03 07:48

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
doi https://doi.org/10.52842/conf.acadia.2008.066
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_364
id acadia08_364
authors Bonwetsch, Tobias; Ralph Baertschi ;Silvan Oesterle
year 2008
title Adding Performance Criteria to Digital Fabrication: Room-Acoustical Information of Diffuse Respondent Panels
doi https://doi.org/10.52842/conf.acadia.2008.364
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 364-369
summary In this research project we explore the defined design and application of digitally fabricated wall panels for room-acoustical architectural interventions. In Particular, we investigate the room-acoustical criteria applying to everyday used spaces. We present a digital design and fabrication process developed to create non-standardised panels and two case studies which apply this process on the acoustical improvement of a specific room situation. Our aim is to find correlations between digitally fabricated surface structures and sound- aesthetical characteristics, in order to utilise these for the architectural design.
keywords Acoustics; Digital Fabrication; Evaluation; Material; Robotics
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_118
id acadia08_118
authors Cabrinha, Mark
year 2008
title Gridshell Tectonics: Material Values Digital Parameters
doi https://doi.org/10.52842/conf.acadia.2008.118
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 118-125
summary This paper begins with a simple proposition: rather than mimicking the geometric structures found in nature, perhaps the most effective modes of sustainable fabrication can be found through understanding the nature of materials themselves. Material becomes a design parameter through the constraints of fabrication tools, limitations of material size, and most importantly the productive capacity of material resistance—a given material’s capacity and tendencies to take shape, rather than cutting shape out of material. ¶ Gridshell structures provide an intriguing case study to pursue this proposition. Not only is there clear precedent in the form-finding experiments of Frei Otto and the Institute for Lightweight Structures, but also the very NURBS based tools of current design practices developed from the ability of wood to bend. Taking the bent wood spline quite literally, gridshells provide a means that is at once formally expressive, structurally optimized, materially efficient, and quite simply a delight to experience. The larger motivation of this work anticipates a parametric system linking the intrinsic material values of the gridshell tectonic with extrinsic criteria such as programmatic needs and environmental response. ¶ Through an applied case study of gridshells, the play between form and material is tested out through the author’s own experimentation with gridshells and the pedagogical results of two gridshell studios. The goal of this research is to establish a give-and-take relationship between top-down formal emphasis and a bottom-up material influence.
keywords Digital Fabrication; Form-Finding; Material; Pedagogy; Structure
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_340
id acadia08_340
authors Chalmers, Chris
year 2008
title Chemical Signaling as a Model for Digital Process in Architecture
doi https://doi.org/10.52842/conf.acadia.2008.340
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 340-345
summary The role of the architect is quite literally one of assembly: synthesizing the various parts of a project into a cohesive whole. It is a difficult job, often requiring the architect to weave many seemingly contradictory concerns into a solution that benefits them all. It is not surprising then, that the many elegant and effective systems found in nature should be inspiring to the architect. Emerging fields like biomimicry and systems dynamics model the patterns of interaction between organisms and their environments in terms of dynamic part to part and part to whole relationships. ¶ Observations of real relationships between organisms and their environments, as they exist in nature, reveal complex feedback loops working across multiple scales. These feedback loops operate by the simultaneous action of two observed phenomena. The first is the classic phenotypic relationship seen when organisms of the same genetic makeup instantiate differently based upon differences in their environment. This is the relationship that was originally proposed by Charles Darwin in his theory of natural selection of 1859. Darwin’s model is unidirectional: the organism adapts to its environment, but not the other way around. It operates at the local scale as individual parts react to the conditions of the whole. (Canguilhem, 1952). ¶ The second phenomenon, which sees its effect at the global scale, is the individual’s role as consumer and producer in the flows of energy and material that surround it. It is the subtle and incremental influence of the organism upon its environment, the results of which are often invisible until they reach a catastrophic threshold, at which point all organisms in the system feel global changes. ; The research presented in this paper addresses the dialectic between organism and environment as each responds reciprocally to the others’ changing state. Such feedback loops act in a non-linear fashion, across nested scales in biological systems. They can be modeled to act that way in a digital design process as well. This research is an exploration into one such model and its application to architecture: the simple communication between organisms as they affect and are affected by their environments through the use of signal chemicals.
keywords Biology; Cellular Automata; Feedback; Material; Scripting
series ACADIA
last changed 2022/06/07 07:55

_id acadia08_082
id acadia08_082
authors Del Campo, Matias; Sandra Manninger
year 2008
title Speculations on Tissue Engineering and Architecture
doi https://doi.org/10.52842/conf.acadia.2008.082
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 82-87
summary The main aim of this paper is to speculate on opportunities inherent in the field of tissue engineering, for possible applications in the discipline of architecture. Engineered solutions based on the discoveries within the discipline of Tissue engineering can yield novel building materials and construction methods. These entire conjectures mean a different approach to the trajectories of architectural production, abandoning mechanical solutions for architecture problems in favor of biological, organ driven architectonic conditions.
keywords Algorithm; Construction; Digital Fabrication; Material; Topology
series ACADIA
last changed 2022/06/07 07:55

_id acadia08_300
id acadia08_300
authors Doumpioti, Christina
year 2008
title Adaptive Growth of Fibre Composite Structures
doi https://doi.org/10.52842/conf.acadia.2008.300
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 300-307
summary The core idea of this research is the incorporation of the morphogenetic principles found in natural systems in the generation of fibre-composite structures by exploiting, at the maximum, the intrinsic performative capacities of the material system in use. The intention is the integration of form, material, structure and program into a multi-performative system that will satisfy simultaneously several, even conflicting objectives, in order to achieve an optimal compromise. This process involves the combination and implementation of concepts and methods based on precedent studies in the field of biomimetics, as well as form-finding digital and physical experiments that inform a coherent design methodology, leading to a structural system able to be fabricated using cutting-edge technology.
keywords Adaptation; Composite; Fiber; Integrative; Morphogenesis
series ACADIA
last changed 2022/06/07 07:55

_id cdc2008_105
id cdc2008_105
authors Friedrich, Christian
year 2008
title Information-matter hybrids: Prototypes engaging immediacy as architectural quality
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 105-110
summary ‘Immediate Architecture’ is an exploratory investigation into possibilities of immediate interactive and constructive interaction with the built environment supported by digital technologies. Aim is to realize interactive reconfigurable architectural objects that support their informational and material reconfiguration in real-time. The outcome is intended to become a synergetic amalgam of interactive architecture, parametric design environment, automated component fabrication and assembly. To this end, computational and material strategies are developed to approach the condition of immediate architecture and applied in real-world prototypes. A series of developed techniques are presented, ranging from realtime volumetric modeling, behavioral programming and meta-application protocol to streaming fabrication and dynamic components for interactive architecture.
email
last changed 2009/01/07 08:05

_id acadia08_094
id acadia08_094
authors Helms, Michael E.; Swaroop S. Vattam; Ashok K. Goel; Jeannette Yen; Marc Weissburg
year 2008
title Problem-Driven and Solution-Based Design: Twin Processes of Biologically Inspired Design
doi https://doi.org/10.52842/conf.acadia.2008.094
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 94-101
summary Biologically inspired design uses biological systems as analogues to develop solutions for design problems. We conducted a cognitive study of biologically inspired design in the context of an interdisciplinary introductory course on biologically inspired design in Fall of 2006. The goal of this study was to understand the processes of biologically inspired design. This paper provides a descriptive account of twin biologically inspired design processes, problem-driven and solution-based, and highlights the similarities and differences between them.
keywords Biomimetics; Design; Evaluation; Material; Process
series ACADIA
last changed 2022/06/07 07:49

_id cdc2008_301
id cdc2008_301
authors Herron, Jock
year 2008
title Shaping the Global City: The Digital Culture of Markets, Norbert Wiener and the Musings of Archigram
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 301-308
summary The contemporary “built environment” as conceived by designers – be it actual or virtual; be it architecture, landscape, industrial products or, more purely, art – is increasingly generated using powerful computational tools that are shaping the culture of the design professions, so much so that the phrase “digital culture” aptly applies. Designers are rightly inclined to believe that the emerging contemporary landscape – especially in thriving global cities like New York, London and Tokyo – has recently been and will continue to be shaped in important ways by digital design. That will surely be the case. However, design does not exist in a material vacuum. Someone pays for it. This essay argues that the primary shaper of global cities today is another “digital culture”, one defined by the confluence of professions and institutions that constitute our global financial markets. The essay explores the common origins of these two cultures – design and finance; the prescient insights of Archigram into the cybernetic future of cities; the spatial implications of nomadic “digitized” capital and the hazards of desensitizing – in many ways, dematerializing – the professional practices of design and finance. The purpose of the essay is not to establish primacy of one over the other. Especially in the case of urban design, they are interdependent. The purpose is to explore the connection.
email
last changed 2009/01/07 08:05

_id cdc2008_383
id cdc2008_383
authors Kallipoliti, Lydia and Alexandros Tsamis
year 2008
title The teleplastic abuse of ornamentation
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 383-392
summary Is it possible that psychoanalysis, a discipline that allegedly deals with abstract or invisible entities, and entomology, a discipline that predominantly taxonomizes insects by type, can offer us an insight into the nature of digital design processes and emergent material phenomena? One of Roger Caillois’ most controversial psychoanalytic theories, “teleplasty,” shows that psychoanalysis and entomology can indeed suggest an alternative perspective of how bodily or other material substances are initially fabricated by insects and how they can further transform. In several of his case studies, Caillois claims alliances between material and psychical structures in his psycho-material teleplastic theorem and eventually questions spatial distinctions: distinctions between geometry and material, purpose and function, cause and effect, between the imaginary and the real. Can digital media help us redefine the static relationship between a window and a wall as an interaction of chemical substances rather than a process of assembling joints and components? Can we perceive material, not as an application to predetermined geometries, but as an inherent condition, a subatomic organization of matter that precedes geometry? The aim of this paper is to problematize such distinctions as a discussion emerging through the prolific use of digital design processes.
email
last changed 2009/01/07 08:05

_id acadia08_286
id acadia08_286
authors Khan, Omar
year 2008
title Reconfigurable Molds as Architecture Machines
doi https://doi.org/10.52842/conf.acadia.2008.286
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 286-291
summary In The Architecture Machine (1970), Nicholas Negroponte postulates the development of design machines wherein the “design process, considered as evolutionary, can be presented to a machine, also considered as evolutionary, and a mutual training, resilience, and growth can be developed.” The book, dedicated to “the first machine that can appreciate the ges­ture,” argues for developing machines with human like quali­ties. This paper aims to develop an alternative trajectory to the “evolutionary” architecture machine, this time not towards anthropomorphism but responsiveness. The aim on one level is the same: to create machines that appreciate the gesture. However our approach is tied to more modest aims and means that bring current thinking on evolutionary processes and the forming of materials together. The reconfigurable mold (RCM) is an architecture machine that produces parts that can be combined to create more complex organizations. The molds are simple analog computers that employ various continuous scales like volume, weight and heat to develop their unique components. Parametric alterations are made possible by affecting these measures in the process of fabrication. An underlying material that is instrumental in the molds is rub­ber, whose variable elasticity provides unique possibilities for indexing the gesture that remains elusive for industrial pro­cesses.
keywords Casting; Digital Fabrication; Generative; Material; Morphogenesis
series ACADIA
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_998055 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002