CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 475

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 5d77
id 5d77
authors Adriane Borda; Neusa Félix; Janice de Freitas Pires; Noélia de Moraes Aguirre.
year 2008
title MODELAGEM GEOMÉTRICA NOS ESTÁGIOS INICIAIS DE APRENDIZAGEM DA PRÁTICA PROJETUAL EM ARQUITETURA. GEOMETRIC MODELING IN THE EARLY STAGES OF LEARNING PRACTICE ARCHITECTURAL DESIGN.
source 12th Iberoamerican Congress of Digital Graphics, SIGRADI, 2008, Havana. SIGRADI, Proceedings of the 12th Iberoamerican Congress of Digital Graphics.. Havana : Ministerio de Educacion Superior, 2008. p. 434-438.
summary This work invests on delimitation of a Geometric Modeling study program directed to students at the initial stages of Architecture. It is considered that the studies promote a qualified control of the form based on recognition of parameters which define it, moreover it also allows the enlargement of the students geometric vocabulary, important to the architectural design activities. In this way, the program advances on the appropriation of new concepts which surround the investigations on architectural design processes, such as the concept of shape grammar. Observing analysis and architectural composition practices based on such concept, contents of geometric modeling which are already being used in the context of post-graduation are identified to be transposed to the graduation context, along with the initial teaching practices of architectural design. The results refer to making the didactic material available, these materials have the objective of building references for the development of design practice which explore the reflection about the processes of creation and composition of architectural form in their geometric aspects.
keywords Architecture, Geometric Modeling, Shape grammar, Teaching/Learning
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:47

_id ijac20086405
id ijac20086405
authors Ahlquist, Sean; Fleischmann, Moritz
year 2008
title Elemental Methods for Integrated Architectures: Experimentation with Design Processes for Cable Net Structures
source International Journal of Architectural Computing vol. 6 - no. 4, 453-475
summary Tension active systems are compelling architectural structures having an intimate connection between structural performance and the arrangement of material. The direct flow of structural forces through the material makes these systems attractive and unique from an aesthetic point of view, but they are a challenge to develop from a design and an engineering perspective. Traditional methods for solving such structural systems rely on both analog modeling techniques and the use of highly advanced engineering software. The complexity and laborious nature of both processes presents a challenge for iterating through design variations. To experiment with the spacemaking capabilities of tension active systems, it is necessary to design methods that can actively couple the digital simulation with the analog methods for building the physical structure. What we propose is a designer-authored process that digitally simulates the behaviors of tension active systems using simple geometric components related to material and structural performance, activated and varied through elemental techniques of scripting. The logics for manufacturing and assembly are to be embedded in the digital generation of form. The intention is to transform what is a highly engineered system into an architectural system where investigation is as much about the determination of space and environment as it is about the arrangement of structure and material.
series journal
last changed 2009/03/03 07:48

_id acadia08_082
id acadia08_082
authors Del Campo, Matias; Sandra Manninger
year 2008
title Speculations on Tissue Engineering and Architecture
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 82-87
doi https://doi.org/10.52842/conf.acadia.2008.082
summary The main aim of this paper is to speculate on opportunities inherent in the field of tissue engineering, for possible applications in the discipline of architecture. Engineered solutions based on the discoveries within the discipline of Tissue engineering can yield novel building materials and construction methods. These entire conjectures mean a different approach to the trajectories of architectural production, abandoning mechanical solutions for architecture problems in favor of biological, organ driven architectonic conditions.
keywords Algorithm; Construction; Digital Fabrication; Material; Topology
series ACADIA
last changed 2022/06/07 07:55

_id ecaade2015_265
id ecaade2015_265
authors Hosey, Shannon; Beorkrem, Christopher, Damiano, Ashley, Lopez, Rafael and McCall, Marlena
year 2015
title Digital Design for Disassembly
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 371-382
doi https://doi.org/10.52842/conf.ecaade.2015.2.371
wos WOS:000372316000043
summary The construction and building sector is now widely known to be one of the biggest energy consumers, carbon emitters, and creators of waste. Some architectural agendas for sustainability focus on energy efficiency of buildings that minimize their energy intake during their lifetime - through the use of more efficient mechanical systems or more insulative wall systems. One issue with these sustainability models is that they often ignore the hierarchy of energy within architectural design. The focus on the efficiency is but one aspect or system of the building assembly, when compared to the effectiveness of the whole, which often leads to ad-hoc ecology and results in the all too familiar “law of unintended consequences” (Merton, 1936). As soon as adhesive is used to connect two materials, a piece of trash is created. If designers treat material as energy, and want to use energy responsibly, they can prolong the lifetime of building material by designing for disassembly. By changing the nature of the physical relationship between materials, buildings can be reconfigured and repurposed all the while keeping materials out of a landfill. The use of smart joinery to create building assemblies which can be disassembled, has a milieu of new possibilities created through the use of digital manufacturing equipment. These tools afford designers and manufacturers the ability to create individual joints of a variety of types, which perform as well or better than conventional systems. The concept of design for disassembly is a recognizable goal of industrial design and manufacturing, but for Architecture it remains a novel approach. A classic example is Kieran Timberlake's Loblolly House, which employed material assemblies “that are detailed for on-site assembly as well as future disassembly and redeployment” (Flat, Inc, 2008). The use of nearly ubiquitous digital manufacturing tools helps designers create highly functional, precise and effective methods of connection which afford a building to be taken apart and reused or reassembled into alternative configurations or for alternative uses. This paper will survey alternative energy strategies made available through joinery using digital manufacturing and design methods, and will evaluate these strategies in their ability to create diassemblable materials which therefore use less energy - or minimize the entropy of energy over the life-cycle of the material.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4075520a-6fe7-11e5-bcc8-f7d564ea25ed
last changed 2022/06/07 07:50

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id cdc2008_091
id cdc2008_091
authors Neumann, Oliver
year 2008
title Digitally Mediated Regional Building Cultures
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 91-98
summary Designs are complex energy and material systems and products of diverse cultural, economic, and environmental conditions that engage with their extended context. This approach relates architecture to the discourse on complexity. The design research described in this paper introduces an extended definition of ecology that expands the scope of design discourse beyond the environmental performance of materials and types of construction to broader cultural considerations. Parallel to enabling rich formal explorations, digital modeling and fabrication tools provide a basis for engaging with complex ecologies within which design and building exist. Innovative design applications of digital media emphasize interdependencies between new design methods and their particular context in material science, economy, and culture. In British Columbia, influences of fabrication and building technology are evident in the development of a regional cultural identity that is characterized by wood construction. While embracing digital technology as a key to future development and geographic identity, three collaborative digital wood fabrication projects illustrate distinctions between concepts of complexity and responsiveness and their application in design and construction.
email
last changed 2009/01/07 08:05

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
doi https://doi.org/10.52842/conf.acadia.2011.152
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id acadia08_376
id acadia08_376
authors Silver, Mike
year 2008
title The Most Important Airplane In The History Of Architecture
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 376-381
doi https://doi.org/10.52842/conf.acadia.2008.376
summary Composite structures consist of high strength carbon threads held together in a matrix of epoxy resin or thermoplastics. Surfaces made from these materials are typically 10 times lighter and 1.5 times stronger than aluminum. Both simple and highly contoured shapes possessing extreme strength can be produced using a computer controlled fiber placement machine (FPM). These incredibly thin, corrosion resistant membranes require little or no supplemental support to manage loads and enclose space. The computer’s ability to determine the precise location of each fiber strand in a fiber placed part also facilitates unprecedented control of its aesthetic and functional properties. Fiber placement technology integrates building components that would normally be separated into clearly distinct systems. Here ornament, structure and cladding are collapsed into one material process. This paper explores the architectural potential of a technology normally reserved for aerospace applications through research conducted in close collaboration with fiber placement engineers at Automated Dynamics in Schenectady, New York (ADC).
keywords Composite; Digital Fabrication; Fiber; Skin; Structure
series ACADIA
last changed 2022/06/07 07:56

_id ijac20076103
id ijac20076103
authors Tonn, Christian; Petzold, Frank; Bimber, Oliver; Grundhofer, Anselm; Donath, Dirk
year 2008
title Spatial Augmented Reality for Architecture Designing and planning with and within existing buildings
source International Journal of Architectural Computing vol. 6 - no. 1, pp. 41-58
summary At present, more than half of all building activity in the German building sector is undertaken within existing built contexts. The development of a conceptual and technological basis for the digital support of design directly on site, within an existing building context is the focus of the research project "Spatial Augmented Reality for Architecture" (SAR). This paper describes the goals achieved in one aspect of the project: the sampling of colors and materials at a scale of 1:1 using Augmented Reality (AR) technologies. We present initial results from the project; the development of an ad-hoc visualization of interactive data on arbitrary surfaces in real-world indoor environments using a mobile hardware setup. With this, it was possible to project the color and material qualities of a design directly onto almost all surfaces within a geometrically corrected, existing building. Initially, a software prototype "Spatial Augmented Reality for Architecture-Colored Architecture" (SAR-CA) was developed and then assessed based on evaluation results from a user study.
series journal
last changed 2008/06/18 08:12

_id acadia05_200
id acadia05_200
authors Tsou, J.-Y., Chan Yi Lee, Mak Kwok Pui, Ru Xu Du, Liang Jian, Yeung Kim
year 2005
title Applying Scientific Simulation to Integrate Thermoelectric Conductor Module into Architectural Design – Smart Wall for Thermal Comfort
source Smart Architecture: Integration of Digital and Building Technologies [Proceedings of the 2005 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 0-9772832-0-8] Savannah (Georgia) 13-16 October 2005, pp. 200-210
doi https://doi.org/10.52842/conf.acadia.2005.200
summary This paper presents the innovative architectural design concept, which is to integrate the new material and technology into the building design to achieve the thermal comfort and at the same time reduce the energy consumption of the building by making use of the renewable energy, including solar and wind energy. The system is developed based on the idea of regional thermal comfort in building. The advantage of the system is the environmental friendly approach, costless operation, reliability, flexibility, scalability and adaptability for the integration to the building design. With the design concept, we tried to do two application designs in two virtual sites. One is a badminton court for the 2008 Beijing Olympic Games and the other is a cooling pond in a shopping mall. We will introduce how computational simulation can contribute to the prediction of the performance of the design. We will also discuss how the computation simulation can help in the design optimization process. Through the development of the new design integration of the material to the building, we would like to feedback to the material industry to encourage further collaboration and development in the material enhancement, so that both industries and the society can benefit from the advancement.
series ACADIA
email
last changed 2022/06/07 07:57

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia08_238
id acadia08_238
authors Besserud, Keith; Joshua Cotten
year 2008
title Architectural Genomics
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 238-245
doi https://doi.org/10.52842/conf.acadia.2008.238
summary This paper provides an introduction to the concept of genetic algorithms and a sampling of how they are being explored as an optimization strategy for some of the building projects in the BlackBox studio at Skidmore, Owings, and Merrill.
keywords Algorithm; Environment; Evolution; Genetic; Simulation
series ACADIA
last changed 2022/06/07 07:52

_id ijac20076106
id ijac20076106
authors Donath, Dirk; Bohme, Luis Felipe Gonzalez
year 2008
title Constraint-Based Design in Participatory Housing Planning
source International Journal of Architectural Computing vol. 6 - no. 1, pp. 97-117
summary We introduce some novel ideas for a constraint-based design strategy to support participatory housing planning processes in Latin America. The following lines intend to open the discussion on the requirements and effect of the computer implementation of a constraint satisfaction approach to solve elementary design problems in architectural practice. The case study applies to the building massing design problem posed by the Chilean urban regulatory framework that addresses single-family affordable houses. Two different implementation criteria are being tested in an ongoing series of trials providing further considerations. One prototype uses MAXON's CINEMA4D XPRESSO® visual scripting environment to set up a semi-automated design environment which allows users to edit one feature-based 3D model of massing alternative at a time. The other prototype uses ILOG's OPL STUDIO® constraint programming environment to achieve fully automated search and 2D visualization of all possible solution alternatives to separate subdomains of the building massing design problem.
series journal
last changed 2008/06/18 08:12

_id 82b1
id 82b1
authors Greenwood D, Horne M, Thompson E M, Allwood C M, Wernemyr C, Westerdahl B.
year 2008
title Strategic Perspectives of the Use of Virtual Reality within the Building Industries of Four Countries.
source International Journal of Architectural Engineering and Design Management
summary This paper presents results from the first stage of an analysis of the use of virtual reality (VR) within the building industries of strategically selected countries, namely, China, Sweden, the UK and the US. The aims of the research are to assess VR usage and its benefits within the building industries of these countries and to identify perceived barriers to VR usage and ways of overcoming them. The countries selected offer a range of experience in the adoption of VR technologies and the paper provides an initial analysis of developments at an international level. Semi-structured interviews were conducted with senior professionals from each of six leading construction companies within each country. The findings included the rationale for the adoption of VR and the barriers to doing so, as well as some divergence between the respondents in their working definition of what visualization and, specifically, VR actually represents.
keywords Building industry; implementation strategy;international perspectives; interview survey; virtual reality
series other
type normal paper
email
last changed 2008/11/26 16:54

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20076204
id ijac20076204
authors Schlueter, Arno; Bonwetsch, Tobias
year 2008
title Design Rationalization of Irregular Cellular Structures
source International Journal of Architectural Computing vol. 6 - no. 2, pp. 197-211
summary Complex geometries found in nature are increasingly used as images and analogies for the creation of form and space in architectural design. To be able to construct the resulting complex building forms, strategies to handle the resulting production requirements are necessary. In the example of a design project for a Japanese noodle bar, a strategy for the realization of an irregular cellular spatial structure is presented. In order to represent its complex geometry, building principles relating to foam are applied to transform and optimize the design, which is based on hexagonal, cellular compartments defining the different interior spaces. The principles are converted into software code and implemented into a digital design toolbox to be used within a 3D-modelling environment. Utilizing the tools within the redesign process made a rationalization of the cellular structures possible without sacrificing the desired visual irregularity. The toolbox also enables the extraction of the cell geometry to support the generation of production documents. The result is the dramatic reduction of production effort to realize the complex cellular structures by keeping a maximum of design flexibility and desired visual appearance.
series journal
last changed 2008/10/01 21:49

_id acadia08_370
id acadia08_370
authors Wallick, Karl
year 2008
title Digital and Manual Joints
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 370-375
doi https://doi.org/10.52842/conf.acadia.2008.370
summary This paper considers the problem of detailing joints between manual and digital construction by tracking the provocations of KieranTimberlake’s SmartWrap research and the evolution of that knowledge into practical architectural instruments that can be deployed into more traditional construction projects. Over the past several years, KieranTimberlake Associates in Philadelphia has undertaken a path of research focusing on problems of contemporary construction systems and practices. One product of this research was a speculative wall system assembled for a museum exhibit. SmartWrap was to be a digitally prefabricated wall system with embedded technology. ¶ While they have yet to wrap a building with SmartWrap, KieranTimberlake have utilized a number of the construction principles and digital tools tested in the SmartWrap exhibit. One of the most important principles, prefabrication, was explored in a fast-track construction project at the Sidwell Friends School. The compressed schedule drove the design of an enclosure system which incorporated performative elements in similar categories to SmartWrap: insulation, an electrical system, view, daylighting, and a rainscreen. Besides being a prefabricated façade system, the rainscreen detailing became a formal system for organizing many other scales of the project including: site systems, thermal systems, daylighting systems, enclosure, and ornament. At a second project, a similar wood rainscreen strategy was used. However, at the Loblolly House the question of prefabrication and digital modeling was tested far more extensively: thermal systems were embedded into prefabricated floor cartridges, entire program elements – a library, kitchen, and bathroom were proposed as prefabricated systems of self-contained volume and infrastructure which were then inserted into the on-site framework. ; In all three projects the joint between manual-imprecise construction and digital-precise prefabrication became the area of richest invention (Figure 1). SmartWrap may not have yielded flexible, plastic architecture; but its conceptual and practical questions have yielded tangible implications for the design/construction processes and the built product in KieranTimberlake’s practice.
keywords Construction; Design; Integrative; Prefabrication; Skin
series ACADIA
last changed 2022/06/07 07:58

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
doi https://doi.org/10.52842/conf.acadia.2008.066
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_364
id acadia08_364
authors Bonwetsch, Tobias; Ralph Baertschi ;Silvan Oesterle
year 2008
title Adding Performance Criteria to Digital Fabrication: Room-Acoustical Information of Diffuse Respondent Panels
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 364-369
doi https://doi.org/10.52842/conf.acadia.2008.364
summary In this research project we explore the defined design and application of digitally fabricated wall panels for room-acoustical architectural interventions. In Particular, we investigate the room-acoustical criteria applying to everyday used spaces. We present a digital design and fabrication process developed to create non-standardised panels and two case studies which apply this process on the acoustical improvement of a specific room situation. Our aim is to find correlations between digitally fabricated surface structures and sound- aesthetical characteristics, in order to utilise these for the architectural design.
keywords Acoustics; Digital Fabrication; Evaluation; Material; Robotics
series ACADIA
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_205787 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002