CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 489

_id acadia08_054
id acadia08_054
authors Sabin, Jenny E.; Peter Lloyd Jones
year 2008
title Nonlinear Systems Biology and Design: Surface Design
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 54-65
doi https://doi.org/10.52842/conf.acadia.2008.054
summary The intent of this paper is to jointly investigate fundamental processes in living systems, their potential application in the novel design of responsive surfaces and spatial structures, and their applicability in biomedicine. Through the investigation of organotypic biological models designed to recapitulate breast tissue homeostasis and cancer, parallel models work to unfold the parametric logic of these biological and responsive membrane and scaffold structures, thereby revealing their deep interior logics. The result is an abstract surface architecture capable of responding dynamically to both environment (context) and to deeper interior programmed systems.
keywords Algorithm; Biology; Material; Morphogenesis; Nonlinear
series ACADIA
last changed 2022/06/07 07:56

_id sigradi2008_180
id sigradi2008_180
authors Vincent, Charles
year 2008
title Gulliver in the land of Generative Design
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The current trend in architectural design towards architectural computing has been treated both from a philosophical standing point and as an operational systems’ problem, in a quest for explications which could at last break ground for a more broad development and adoption of design tools. As Kostas Terzidis (2007) puts it, the intuitiveness that architects have put on so high a pedestal seems to be the central issue to be dealt with by both views. There seems to be no apparent shortcut toward the reconciliation between traditional practice and new media and most certainly it is not only a problem of interface design, but one of design method clarification and reinterpretation of those methods into computing systems. Furthermore, there’s no doubt left as to whether computing systems can generate such new patterns as to impact our own understanding of architecture. But even if computer algorithms can make possible the exploration of abstract alternatives to an abstract initial idea, as in Mathematica and Processing, the issue of relating abstract and geometric representations of human centered architecture lays in the hands of architects, programmers or, better yet, architect-programmers. What seems now to be the relevant change is that architectural design might escape from the traditional sequence embedded in the need – program – design iterations – solution timeline, substituted by a web of interactions among differing experimental paths, in which even the identification of needs is to be informed by computing. It is interesting to note that the computational approach to architectural design has been praised for the formal fluidity of bubbles and Bezier shapes it entails and for the overcoming of functionalist and serialization typical of modern architecture. That approach betrays a high degree of canonic fascination with the tools of the trade and very little connection to the day to day chores of building design. On the other hand, shall our new tools and toys open up new ways of thinking and designing our built landscape? What educational issues surface if we are to foster wider use of the existing technologies and simultaneously address the need to overtake mass construction? Is mass customization the answer for the dead end modern architecture has led us to? Can we let go the humanist approach begun in Renascence and culminated in Modernism or shall we review that approach in view of algorithmic architecture? Let us step back in time to 1726 when Swift’s ‘Travels into Several Remote Nations of the World by Lemuel Gulliver’ was first published. In Swift’s fierce critic of what seemed to him the most outrageous ideas, he conceived a strange machine devised to automatically write books and poetry, in much the same generative fashion that now, three centuries later, we begin to cherish. “Every one knew how laborious the usual method is of attaining to arts and sciences; whereas by his contrivance, the most ignorant person at a reasonable charge, and with a little bodily labour, may write books in philosophy, poetry, politicks, law, mathematics and theology, without the least assistance from genius or study. He then led me to the frame, about the sides whereof all his pupils stood in ranks. It was twenty foot square, placed in the middle of the room. The superficies was composed of several bits of wood, about the bigness of a dye, but some larger than others. They were all linked together by slender wires. These bits of wood were covered on every square with paper pasted on them; and, on these papers were written all the words of their language in their several moods, tenses, and declensions, but without any order. The professor then desired me to observe, for he was going to set his engine at work. The pupils at his command took each of them hold of an iron handle, whereof there were forty fixed round the edges of the frame; and giving them a sudden turn, the whole disposition of words was entirely changed. He then commanded six and thirty of the lads to read the several lines softly as they appeared upon the frame; and where they found three or four words together that might make part of a sentence, they dictated to the four remaining boys who were scribes. This work was repeated three or four times, and at every turn the engine was so contrived, that the words shifted into new places, as the square bits of wood moved upside down.” (Jonathan Swift, Gulliver’s Travels, A Voyage to Balnibarbi) What astonishing forecast did Swift show in that narrative that, in spite of the underlying incredulity and irony, still clarifies our surprise when faced to what might seem to some of us just an abandonment of all that architects and designers have cherished: creativeness and inventiveness. Yet, we could argue that such a radical shift in paradigm occurred once when master builders left the construction ground and took seat at drafting boards. The whole body of design and construction knowledge was split into what now seem to us just specialties undertaken by more and more isolated professionals. That shift entailed new forms of representation and prediction which now each and all architects take for granted. Also, Cartesian space representation turned out to be the main instrument for professional practice, even if one can argue that it is not more than the unfolding of stone carving techniques that master builders and guilds were so fond of. Enter computing and all its unfolding, i.e. DNA coding, fractal geometry, generative computing, nonlinear dynamics, pattern generation and cellular automata, as a whole new chapter in science, and compare that to conical perspective, descriptive and analytical geometry and calculus, and an image begins to form, delineating a separation between architect and digital designer. In previous works, we have tried approaching the issues regarding architects education in a more consensual way. But it seems now that the whole curricular corpus might be changed as well. The very foundations upon which we prepare future professionals shall change, not only in College, but in High School as well. In this paper, we delve further into the disconnect between current curricula and digital design practices and suggest new disciplinary grounds for a new architectural education.
keywords Educational paradigm; Design teaching; Design methods;
series SIGRADI
email
last changed 2016/03/10 10:02

_id acadia08_192
id acadia08_192
authors Lee, Charles
year 2008
title The Thermal Organism And Architecture
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 192-199
doi https://doi.org/10.52842/conf.acadia.2008.192
summary Throughout the history of architectural discourse the concept of metabolic function in a building and a buildings relationship to its creators is expressed by keen designers who understand the subtle linkage. Organistic homeostasis is a biological function found in all mammals including humans. The interior generation of heat classifies man as endothermic. Endothermic heat generation allows for a very controlled equilibrium and is a characteristic of more complex organisms. The body has produced highly evolved surface systems to help efficiently manage the flow of heat energy in and out of the body. I suggest building envelopes represent the human being projecting itself outwards in a prosthetic extension of the skin. Inherent in this projection are the same demands of envelope put forth in the body. In my research of anatomy I have found one system that has evolved to help facilitate endothermic heat regulation in mammals at the skin level, which is hair. How does hair transcribe into architecture? An analysis into the function of hair and its adaptable morphologies is studied. Hair is a thermal regulating system, its building equivalent are forms of thermal insulation and radiant barriers. Hairs goal is homeostatic equilibrium which has its architectural counterpoint known as the balance point. Hair is an adjustable system that mitigates between internal and external heat loading which is the goal of a building envelope. In conclusion the paper explores these issues and more in new building systems and design tactics that originate from the function of hair.
keywords Biology; Biomimetics; Design; Environment; Responsive
series ACADIA
last changed 2022/06/07 07:51

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
doi https://doi.org/10.52842/conf.acadia.2008.066
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_340
id acadia08_340
authors Chalmers, Chris
year 2008
title Chemical Signaling as a Model for Digital Process in Architecture
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 340-345
doi https://doi.org/10.52842/conf.acadia.2008.340
summary The role of the architect is quite literally one of assembly: synthesizing the various parts of a project into a cohesive whole. It is a difficult job, often requiring the architect to weave many seemingly contradictory concerns into a solution that benefits them all. It is not surprising then, that the many elegant and effective systems found in nature should be inspiring to the architect. Emerging fields like biomimicry and systems dynamics model the patterns of interaction between organisms and their environments in terms of dynamic part to part and part to whole relationships. ¶ Observations of real relationships between organisms and their environments, as they exist in nature, reveal complex feedback loops working across multiple scales. These feedback loops operate by the simultaneous action of two observed phenomena. The first is the classic phenotypic relationship seen when organisms of the same genetic makeup instantiate differently based upon differences in their environment. This is the relationship that was originally proposed by Charles Darwin in his theory of natural selection of 1859. Darwin’s model is unidirectional: the organism adapts to its environment, but not the other way around. It operates at the local scale as individual parts react to the conditions of the whole. (Canguilhem, 1952). ¶ The second phenomenon, which sees its effect at the global scale, is the individual’s role as consumer and producer in the flows of energy and material that surround it. It is the subtle and incremental influence of the organism upon its environment, the results of which are often invisible until they reach a catastrophic threshold, at which point all organisms in the system feel global changes. ; The research presented in this paper addresses the dialectic between organism and environment as each responds reciprocally to the others’ changing state. Such feedback loops act in a non-linear fashion, across nested scales in biological systems. They can be modeled to act that way in a digital design process as well. This research is an exploration into one such model and its application to architecture: the simple communication between organisms as they affect and are affected by their environments through the use of signal chemicals.
keywords Biology; Cellular Automata; Feedback; Material; Scripting
series ACADIA
last changed 2022/06/07 07:55

_id ddss2008-33
id ddss2008-33
authors Charlton, James A.; Bob Giddings and Margaret Horne
year 2008
title A survey of computer software for the urban designprocess
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary Urban design is concerned with the shape, the surface and the physical arrangement of all kinds of urban elements, the basic components that make up the built environment, at the level of buildings, spaces and human activities. It is also concerned with the non-visual aspects of the environment, such as noise, wind and temperature and humidity. The city square is a particular urban element which can take many forms and its geometrical relationships such as maximum dimensions, ratio of width to length and building height to length have been analysed for centuries (Alberti 1475), (Vitruvius 1550), (Sitte 1889), (Corbett 2004). Within the current urban design process there are increasing examples of three dimensional computer representations which allow the user to experience a visual sense of the geometry of city squares in an urban landscape. Computer-aided design and Virtual Reality technologies have recently contributed to this visual assessment, but there have been limited attempts at 3D computer representations which allow the user to experience a greater sense of the urban space. This paper will describe a survey of computer tools which could support a more holistic approach to urban design and which could be used to simulate a number of urban texture and urban quality aspects. It will provide a systematic overview of currently available software that could support the simulation of building density, height, colour and style as well as conditions relating to noise, shading, heat, natural and artificial light. It will describe a methodology for the selection and filtering of appropriate computer applications and offer an initial evaluation of these tools for the analysis and representation of the three-dimensional geometry, urban texture and urban quality of city centre spaces. The paper is structured to include an introduction to the design criteria relating to city centre spaces which underpins this research. Next the systematic review of computer software will be described, and selected tools will undergo initial evaluation. Finally conclusions will be drawn and areas for future research identified.
keywords Urban design, Software identification, 3D modelling, Pedestrian modelling, Wind modelling, Noise mapping, Thermal comfort, VR Engine
series DDSS
last changed 2008/09/01 17:06

_id acadia08_088
id acadia08_088
authors Hynes, Hugh
year 2008
title When The Going Gets Tough, The Pluripotent Get Going: Resilient Developmental Models
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 88-93
doi https://doi.org/10.52842/conf.acadia.2008.088
summary Mechanisms of biological development, such as in embryogenesis, offer promising models for resilient architectural systems well-suited to volatile or unpredictable contextual conditions. The resilience of embryonic development as a process is such that successful development—“success” defined here as that which results in the birth of an organism that can survive—can sustain extreme shifts in a normal developmental process, triggered by mutations, environmental pressures, injury, or experimental intervention. More specifically, biological development combines mechanisms of standardization with mechanisms of customization to create open-ended or what biologists call pluripotent systems—poised (“-potent”) to develop into a wide range (“pluri-”) of potential forms—which we can endeavor to reproduce mimetically. ¶ This paper considers biomimesis less a matter of replicating these developmental mechanisms physically or formally, but rather borrowing aspects of the mechanisms’ operation in order to test project outcomes digitally. The discipline of developmental biology affords a virtually ready-made conceptual framework and terminology to guide an open-ended digital methodology, in the hope of incorporating increasing degrees of resilience into the resulting design work. Searching for a capacity to sustain a similar fluidity of differentiation afforded by organisms in early development, we explore a pluripotent architecture for which differentiation might occur over time, and which might be better able to absorb volatility.
keywords Adaptation; Differentiation; Morphogenesis; Resilience; Scenario
series ACADIA
last changed 2022/06/07 07:50

_id acadia08_166
id acadia08_166
authors Robinson, Michael
year 2008
title Instrumentalizing Coevolution as Design Technique
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 166-173
doi https://doi.org/10.52842/conf.acadia.2008.166
summary The paper introduces the concepts of system, milieu, and coevolution and illustrates how the terms are manifested in projects from an urban research and design studio.
keywords Analysis; Biology; Ecology; Evolution; Open Systems
series ACADIA
last changed 2022/06/07 08:00

_id ascaad2009_emmanuel_ruffo
id ascaad2009_emmanuel_ruffo
authors Ruffo, Emmanuel
year 2009
title Programming As an Evolutionary Concept for Architectural Education: From natural systems to computer science materialization to emergent and evolutionary embedded architectural design
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 47-59
summary Logic and evolution in ontogenetic processes for Architectural design was the title for a summer program taught at the Escuela de Arquitectura of the Universidad Anahuac from June to July 2008 in the State of Mexico, Mexico. Every single result in architectural design follows logical steps enclosed in the design processes. These logical processes evolve through space-time sequences in order to generate a diversity of possible solutions. In Biology an ontogenetic process refers to the development of an individual organism, anatomical or behavioral feature from the earliest stage to maturity. Following this development criteria students were encouraged to understand the main logics of natural and physical systems through the aid of computer programming. These logics must be understood as tridimensional geometries digitally generated. Right from the beginning all processes generated during the explorations and investigations had to be visualized as integral design performances. The integral design system must embedded structure, function, form and material capacities through the aid of computer programming, digital fabrication technologies and material assembling techniques. It is important to note that final prototypes had to demonstrate the diversity of capacities of the whole system in order to automate the components in evolution.
series ASCAAD
email
last changed 2009/06/30 08:12

_id cdc2008_171
id cdc2008_171
authors Tryfonidou, Katerina and Dimitris Gourdoukis
year 2008
title What comes first: the chicken or the egg? Pattern Formation Models in Biology, Music and Design
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 171-178
summary The popular saying that wonders if the egg is coming before the chicken or vice versa, implies a vicious circle where all the elements are known to us and the one is just succeeding the other in a totally predictable way. In this paper we will argue, using arguments from fields as diverse as experimental music and molecular biology, that development in architecture, with the help of computation, can escape such a repetitive motif. On the contrary, by employing stochastic processes and systems of self organization each new step can be a step into the unknown where predictability gives its place to unpredictability and controlled randomness.
email
last changed 2009/01/07 08:05

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20086405
id ijac20086405
authors Ahlquist, Sean; Fleischmann, Moritz
year 2008
title Elemental Methods for Integrated Architectures: Experimentation with Design Processes for Cable Net Structures
source International Journal of Architectural Computing vol. 6 - no. 4, 453-475
summary Tension active systems are compelling architectural structures having an intimate connection between structural performance and the arrangement of material. The direct flow of structural forces through the material makes these systems attractive and unique from an aesthetic point of view, but they are a challenge to develop from a design and an engineering perspective. Traditional methods for solving such structural systems rely on both analog modeling techniques and the use of highly advanced engineering software. The complexity and laborious nature of both processes presents a challenge for iterating through design variations. To experiment with the spacemaking capabilities of tension active systems, it is necessary to design methods that can actively couple the digital simulation with the analog methods for building the physical structure. What we propose is a designer-authored process that digitally simulates the behaviors of tension active systems using simple geometric components related to material and structural performance, activated and varied through elemental techniques of scripting. The logics for manufacturing and assembly are to be embedded in the digital generation of form. The intention is to transform what is a highly engineered system into an architectural system where investigation is as much about the determination of space and environment as it is about the arrangement of structure and material.
series journal
last changed 2009/03/03 07:48

_id ddss2008-25
id ddss2008-25
authors Antoni, Jean-Philippe; P. Frankhauser, C. Tannier, S. Youssoufi
year 2008
title Simulating and assessing prospective scenariosA comparative approach in urban planning
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary The first part of the paper is centred on the phenomena of urban growth, in order to set the rules for a sustainable scenario of urban development. Then we enter the core of the paper that is the comparison of models. For each of the three compared models, we describe its main theoretical characteristics, the chosen parameters, and the obtained results. In section 6, heterogeneity of the produced results is discussed, and we highlight the points of interest and the lacks of the three models. Here we show that results we obtained feed debates about urban growth management. Finally, concluding remarks at the end of the paper address the general topic of the evaluation of the quality of simulation results.
keywords Urban sprawl, sustainable development, fractals, cellular automata, spatial interaction models
series DDSS
last changed 2008/09/01 17:06

_id ddss2008-09
id ddss2008-09
authors Bates-Brkljac, N.
year 2008
title Towards client-focused architectural representationsas a facilitator for improved design decision-makingprocess
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary This paper focuses on architectural representations as a means of communicating design schemes in the process of decision-making. It reports on the study, which investigated people’s responses to different forms of architectural representations. The paper starts with the discussion about participation in decision-making process and the potential benefits of using computer generated representations. Then, it describes the research study and examines results of the investigation. In the final section it is argued that client focused architectural representations are needed to support the exchange of views and discussion amongst different stakeholders in order to reduce the requirement for trained interpretation and encourage the participation in the decision making process.
keywords Architectural representations, Perceived credibility, Design decision making
series DDSS
last changed 2008/09/01 17:06

_id acadia08_102
id acadia08_102
authors Beaman, Michael
year 2008
title Bio-complexity: Instructing with Relational Generatives
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 102-109
doi https://doi.org/10.52842/conf.acadia.2008.102
summary This paper will discuss the use of complex systems in analyzing biological precedence of self-organizing, self-stabilizing and emergent phenomenon. The use of complex biological systems will be used to define relational models that avoid issues of scale. Scalability (the ability to traverse scales) will be presented as a relational construct through the use of scope, not scale. The analysis of biological formation and organization as a relational model defined by scope will be presented as a generative in forming design strategies and solutions and will be illustrated in four undergraduate-level architecture studio projects.
keywords Complexity; Generative; Scripting; Self-Organization; Simulation
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_464
id acadia08_464
authors Belcher, Daniel; Brian Johnson
year 2008
title MxR: A Physical Model-Based Mixed Reality Interface for Design Collaboration, Simulation, Visualization and Form Generation
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 464-471
doi https://doi.org/10.52842/conf.acadia.2008.464
summary MxR—pronounced “mixer”—is a Mixed/Augmented Reality system intended to support collaboration during early phases of architectural design. MxR allows an interdisciplinary group of practitioners and stakeholders to gather around a table, discuss and test different hypotheses, visualize results, simulate different physical systems, and generate simple forms. MxR is also a test-bed for collaborative interactions and demonstrates different configuration potentials, from exploration of individual alternatives to group discussion around a physical model. As a MR-VR transitional interface, MxR allows for movement along the reality-virtuality continuum, while employing a simple tangible user-interface and a MagicLens interaction technique.
keywords Augmented Reality; Collaboration; Interactive; Interface; Physical Modeling
series ACADIA
last changed 2022/06/07 07:54

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2008_051
id ecaade2008_051
authors Biao, Li; Rong, Li
year 2008
title Teaching of Generative Design and Its Profound Influence
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 77-84
doi https://doi.org/10.52842/conf.ecaade.2008.077
summary The paper presents the teaching process inducting students who knew little about computer programming and concept of generative design originally into theoretically comprehend and ability of computer programming researcher of generative design. Meanwhile, some tools based on principle of ‘Complex Adaptive Systems’ are introduced in the paper.
keywords Complex Adaptive System, generative design
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia08_152
id acadia08_152
authors Biloria, Nimish
year 2008
title Morphogenomic Urban and Architectural Systems: An Investigation into Informatics Oriented Evolution of Form: The Case of the A2 Highway
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 152-157
doi https://doi.org/10.52842/conf.acadia.2008.152
summary This research paper exemplifies upon a novel information integrated generative design method: Morphogenomics, being experimented with at Hyperbody, TU Delft. Morphogenomics, a relatively new research area, which deals with the intricacies of morphological informatics. This paper furthermore discusses an ongoing Morphogenmoics oriented design-research case: the development of a Distributed Network-city along the A2 highway, Netherlands. The A2 highway, development is a live project seeking urban development on either side of this busy highway. Hyperbody, during the course of this research initiative developed a series of real-time interactive computational tools focusing upon the collaborative contextual generation of a performative urban and architectural morphology for the A2 highway. This research paper elaborates upon these computational techniques based Morphogenomic approach and its resultant outcomes.
keywords Computation; Evolution; Flocking; Information; Morphogenesis
series ACADIA
last changed 2022/06/07 07:54

_id caadria2008_24_session3a_193
id caadria2008_24_session3a_193
authors Biswas, Tajin; Tsung-Hsien Wang, Ramesh Krishnamurti
year 2008
title Integrating sustainable building rating systems with building information models
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 193-200
doi https://doi.org/10.52842/conf.caadria.2008.193
summary The transition from conventional to sustainable building depends on a number of factors— technological, environmental, economic and social. From a computer-aided design perspective, the first two are perhaps the most significant. We are working on a project with an emphasis on developing tools, to evaluate environmental consequences for design decision-making. Our current thrust is given to reducing energy usage as well as carbon emissions in buildings.
keywords Sustainable building rating system, Building information model
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_437174 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002