CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 361

_id acadia08_208
id acadia08_208
authors Griffiths, Jason
year 2008
title Man + Water + Fan = Freshman: Natural Process of Evaporative Cooling and the Digital Fabrication of the ASU Outdoor Dining Pavilion
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 208-213
doi https://doi.org/10.52842/conf.acadia.2008.208
summary To the east of Johnson City TX is the Lyndon B. Johnson’s family home. Part of the Johnson Estate2 is given over to a working farm circa 1870 that presents various aspects of domestic practice from the era. This includes a desert fridge which is a simple four-legged structure with a slightly battered profile that’s draped in calico. Its principle is simple; water from an upturned jar is drawn by osmosis down the sides of the calico where it evaporates in wind currents drawn though a “dog run” between two log cabins. Cooled air circulates within the structure and where cheese and milk are kept fresh during the summer. The desert fridge is a simple system that reaches a state of equilibrium through the natural process of evaporation. ¶ This system provides a working model for a prototype structure for an outdoor dining pavilion that was designed and constructed on the campus of Arizona State University. The desert fridge is the basis for a “biological process”3 of evaporative cooling that has been interpreted in terms a ritual of outdoor dining in arid climates. The pavilion is intended as a gathering point and a place of interaction for ASU freshmen. The long-term aim of this project is to provide a multiple of these pavilions across the campus that will be the locus of a sequence of dining events over a “dining season”4 during the fall and spring semester. ; This paper describes how the desert fridge principle has been interpreted in the program and construction of the dining pavilion. It explores a sequence of levels by which the structure, via digital production process, provides an educational narrative on sustainability. This communicative quality is portrayed by the building in direct biological terms, through tacit knowledge, perceived phenomena, lexical and mechanical systems. The paper also describes how these digital production process were used in the building’s design and fabrication. These range from an empirical prognosis of evaporative cooling effects, fluid dynamics, heat mapping and solar radiation analysis through to sheet steel laser cutting, folded plate construction and fully associative variable models of standard steel construction. The aim of the pavilion is to create an environment that presents the evaporative cooling message at a multiple of levels that will concentrate the visitor in holistic understanding of the processes imbued within the building.5
keywords Communication; Digital Fabrication; Environment; System
series ACADIA
last changed 2022/06/07 07:51

_id ecaade2008_151
id ecaade2008_151
authors Barelkowski, Robert
year 2008
title Web-based Support for Social Participation and Education in Planning Procedures
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 823-828
doi https://doi.org/10.52842/conf.ecaade.2008.823
summary The paper is intended to present the methodological structure of web-based mechanisms related to planning procedures, with particular focus on social participation. The tools provide a link between planners and local community members, allow the acquisition of different sets of data, provide detailed information on the environment and planned transformations, serve as a source of detailed information on the procedure, and last but not least play an educational role, which contributes greatly to the understanding of sustainability, cultural sensitivity, environmental issues, planning concerns on a wider scale. Web-related technology provides many opportunities to reach for a wider social participation and simultaneously to receive more representative feedback from the local community. The article will discuss in detail some results of the implementation of the Citizen project – a web-based platform supporting the social participation.
keywords Spatial planning, social participation, web-based tools, web-based participation, Citizen project
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2008_055
id ecaade2008_055
authors Beirão, José; Duarte, José; Stouffs, Rudi
year 2008
title Structuring a Generative Model for Urban Design: Linking GIS to Shape Grammars
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 929-938
doi https://doi.org/10.52842/conf.ecaade.2008.929
summary Urban Design processes need to adopt flexible and adaptive procedures to respond to the evolving demands of the contemporary city. To support such dynamic processes, a specific design methodology and a supporting tool are needed. This design methodology considers the development of a design system rather than a single design solution. It is based on patterns and shape grammars. The idea is to link the descriptions of each pattern to specific shape rules inducing the generation of formal solutions that satisfy the pattern. The methodology explores, from the urban designer point of view, the capacity of a shape grammar to codify and generate urban form (Duarte et al, 2007). This paper defines the ontology of urban entities to build on a GIS platform the topology describing the various components of the city structure. By choosing different sets of patterns the designer defines his vision for a specific context. The patterns are explicated into shape rules that encode the designer’s interpretation of the pattern, and operate on this ontology of urban entities generating solutions that satisfy the pattern’s concept. Some examples of the topological relations are shown.
keywords Patterns, shape grammars, ontology, generative urban design
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2008_16_session2a_132
id caadria2008_16_session2a_132
authors Bhatt, Anand
year 2008
title Modeling conventional Architectural Processes: Maintaining knowledge created by institutions situated in a historic context
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 132-142
doi https://doi.org/10.52842/conf.caadria.2008.132
summary In this paper we present a knowledge representation infrastructure that is being tested in collaboration with several institutions. This infrastructure is designed to map the structure of institutions dealing in Architecture and related disciplines, their interrelationships, and knowledge constructed by institutionalized processes in a given historical context.
keywords Knowledge Acquisition, Modelling, Knowledge Storage, Inferencing, Portals
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2008_159
id ecaade2008_159
authors Bhatt, Anand; Kishore, AVV
year 2008
title Studying Corpus Changes in CumInCAD
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 855-860
doi https://doi.org/10.52842/conf.ecaade.2008.855
summary We discuss several experiments conducted with the Corpus of CAAD research, where we focus on the change in the CAAD Ontology. These experiments are representative of the investigations which could be conducted through an ontology driven, online application designed to allow the research community investigate the nature, structure and evolution of our discipline.
keywords Knowledge Modelling, Modelling View, Semantics and Change, CAAD Ontology, Representation
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia08_118
id acadia08_118
authors Cabrinha, Mark
year 2008
title Gridshell Tectonics: Material Values Digital Parameters
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 118-125
doi https://doi.org/10.52842/conf.acadia.2008.118
summary This paper begins with a simple proposition: rather than mimicking the geometric structures found in nature, perhaps the most effective modes of sustainable fabrication can be found through understanding the nature of materials themselves. Material becomes a design parameter through the constraints of fabrication tools, limitations of material size, and most importantly the productive capacity of material resistance—a given material’s capacity and tendencies to take shape, rather than cutting shape out of material. ¶ Gridshell structures provide an intriguing case study to pursue this proposition. Not only is there clear precedent in the form-finding experiments of Frei Otto and the Institute for Lightweight Structures, but also the very NURBS based tools of current design practices developed from the ability of wood to bend. Taking the bent wood spline quite literally, gridshells provide a means that is at once formally expressive, structurally optimized, materially efficient, and quite simply a delight to experience. The larger motivation of this work anticipates a parametric system linking the intrinsic material values of the gridshell tectonic with extrinsic criteria such as programmatic needs and environmental response. ¶ Through an applied case study of gridshells, the play between form and material is tested out through the author’s own experimentation with gridshells and the pedagogical results of two gridshell studios. The goal of this research is to establish a give-and-take relationship between top-down formal emphasis and a bottom-up material influence.
keywords Digital Fabrication; Form-Finding; Material; Pedagogy; Structure
series ACADIA
last changed 2022/06/07 07:54

_id ddss2008-32
id ddss2008-32
authors Chiaradia, Alain; Christian Schwander, Jorge Gil, Eva Friedrich
year 2008
title Mapping the intangible value of urban layout (i-VALUL): Developing a tool kit for the socio-economic valuation of urbanarea, for designers and decision makers
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary In this paper we present the development of a GIS tool kit for the socioeconomic valuation of urban areas towards the creation of sustainable communities, describing the project context, development process, the tool kit’s structure, its main tools and initial feedback from its use. We then present the plan for training sessions and pilot projects where the tool kit is going to be used, and conclude with the discussion of the development of a single integrated tool to be used beyond the life of the ‘i-VALUL’ project. This project was supported by the UCL led UrbanBuzz programme within which UEL is a prime partner.
keywords Urban planning, spatial analysis, design support tools, evaluation system, GIS
series DDSS
last changed 2008/09/01 17:06

_id ecaade2008_126
id ecaade2008_126
authors Chin, Chi-Ping
year 2008
title Contextual Bricks
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 913-920
doi https://doi.org/10.52842/conf.ecaade.2008.913
summary Based on the importance of human behavior analysis in HCI research, this paper discusses the property of interaction in sending/receiving direction with diverse cases. A unit of contextual bricks was created as research model continuing to discover the possible solution on the problem that how to merge the novel media and technology into our living space invisibly with the exhibition of appropriate information. The prototype of contextual bricks preserved the characteristic of stability with cellular hexagonal structure, and each unit was designed with communicable construction. The people could get the contextual information from other spaces as seeing through the walls. In the future study, the contextual bricks have good applied possibility and developments in each kind of areas.
keywords Context-aware, Ambient Intelligence, Context information interface, Interaction design, Communication design
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2008_023
id ecaade2008_023
authors Ciblac, Thierry
year 2008
title Structure Computation Tools in Architectural Design
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 275-282
doi https://doi.org/10.52842/conf.ecaade.2008.275
summary Structure computation can be carried out in the very early steps of architectural design thanks to the generalization of the use of computers. So, architects can be interested by specific computing tools dedicated to mechanical simulations in design process, especially using interactivity. Researches on these kinds of tools are developed by the ARIAM-LAREA team in the Ecole Nationale Supérieure d’Architecture de Paris La Villette, using graphic statics with a dynamic geometry software, finite element method and tensile structure software. The specificities of such tools are presented through historical examples and students projects.
keywords Design, simulation, dynamic geometry, graphic statics, Finite Element Method
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia08_300
id acadia08_300
authors Doumpioti, Christina
year 2008
title Adaptive Growth of Fibre Composite Structures
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 300-307
doi https://doi.org/10.52842/conf.acadia.2008.300
summary The core idea of this research is the incorporation of the morphogenetic principles found in natural systems in the generation of fibre-composite structures by exploiting, at the maximum, the intrinsic performative capacities of the material system in use. The intention is the integration of form, material, structure and program into a multi-performative system that will satisfy simultaneously several, even conflicting objectives, in order to achieve an optimal compromise. This process involves the combination and implementation of concepts and methods based on precedent studies in the field of biomimetics, as well as form-finding digital and physical experiments that inform a coherent design methodology, leading to a structural system able to be fabricated using cutting-edge technology.
keywords Adaptation; Composite; Fiber; Integrative; Morphogenesis
series ACADIA
last changed 2022/06/07 07:55

_id caadria2008_63_session6b_522
id caadria2008_63_session6b_522
authors Economou, Athanassios; Gernot Riether
year 2008
title Vitruvian machine: Eight exercises in formal composition
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 522-528
doi https://doi.org/10.52842/conf.caadria.2008.522
summary The design machine, an algorithmic structure for design, is considered within current trajectories of architecture discourse to suggest a reinterpretation of the Vitruvian discourse and to produce eight systematic studies in formal composition in architectural design.
keywords Formal composition, shape grammars, digital fabrication, design theory
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2008_184
id ecaade2008_184
authors Fricker, Pia; Hovestadt, Ludger; Braach, Markus; Dillenburger, Benjamin; Fritz, Oliver; Rüdenauer, Kai; Lemmerzahl, Steffen
year 2008
title Form Follows Structure?
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 451-458
doi https://doi.org/10.52842/conf.ecaade.2008.451
summary This paper can be viewed as the continued development of a research project presented at last year’s eCAADe. The project focused on the potential and possibilities of cooperation among architects, investors with concrete building projects, and researchers at the university level working on generative design and parametric construction. After having spent several years of research on design techniques in a purely academic setting at the university we see, contrary to our fears, that reality and the integration of concrete factors such as budget, time management, etc. does not diminish but rather improves the quality of our work. This work is not primarily concerned with the development of a new architectural language but the intelligent use of modern computer technology based on digitized planning processes defined as ‘complex building design’. Designs developed in this manner can be distinguished by certain characteristics, the evaluation of which is a point critically discussed in the following paper.
keywords Generative Design, Collaborative Design, Parametric Design, User Participation in Design, Case Study, Strategic Design
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
doi https://doi.org/10.52842/conf.acadia.2008.072
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2022/06/07 07:50

_id ecaade2008_079
id ecaade2008_079
authors Hemmerling, Marco; Knaack, Ulrich; Schulz, Jens-Uwe
year 2008
title Complexity in Digital Architectural Design
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 85-90
doi https://doi.org/10.52842/conf.ecaade.2008.085
summary The association of complexity and geometry was the starting point for an academic project at the chair of Computer Aided Design in Detmold. The students were asked to analyze a complex structure - taken from nature, art, technology or society - regarding the underlying geometrical rules and principles. The translation of these abstract geometric principles (logarithmic spiral, polyhedron, rotational solids, mesh-work, double helix…) into a three-dimensional structure was then realized in Rhinoceros. The 3D-modeling was followed by a transformation- and optimization-process of the initial shape by using the evolutionary principles of mutation and selection. The set-up for these variations followed predefined rules and principles for the manipulation of the original structure.
keywords Geometry, Complexity, Computer Aided Design, Architecture
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia08_458
id acadia08_458
authors Hemsath, Timothy; Robert Williams; Ronald Bonnstetter; Leen-Kiat Soh
year 2008
title Digital CADCAM Pedagogy Model: Intelligent Inquiry Education
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 458-463
doi https://doi.org/10.52842/conf.acadia.2008.458
summary Prototype manufacturing as an educational tool has been very successful at the college level in architecture and engineering design. This paper discusses an innovative inquiry-based learning approach rather than the problem-based learning models commonly utilized by other similar programs. For example, several research-funded technology projects (e.g., Cappelleri et al. 2007) look at involving students in problem-based learning exercises (e.g., building robots); however, these exercises (while providing valuable experiences) have predetermined outcomes ingrained by the teachers, the project structure, and the components used to construct the devices. Therefore, inquisitive and creative problem solving is limited to the “kit-of-parts” in their approach to solving the problem. The inquiry-based CADCAM pedagogy model is more concerned with the process of solving a problem through the vehicle of prototyping than with the specificity of the design project itself. This approach has great potential. First, the need to solve the problem drives learning on multiple levels, integrating interdisciplinary ideas into the problem and solution. Second, the problem interlocks disciplines through inquiry knowledge building in team exercises. Finally, it encourages diversity and flexibility by allowing students to look at problems from multiples perspectives and points of view.
keywords CAD; Education; Evaluation; Pedagogy; Rapid Prototyping
series ACADIA
last changed 2022/06/07 07:49

_id ddss2008-31
id ddss2008-31
authors Heurkens, Erwin W.T.M.
year 2008
title The Urban Decision RoomApplication and Evaluation of an Urban Management Instrument
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary The Urban Decision Room (UDR) should be placed in the tradition of urban design and planning discipline that is taught, and into which research is carried out, at the Faculty of Architecture at the Delft University of Technology. The UDR was developed at the faculty as one of the new design and planning methods with its own specific features. The UDR is specifically aimed at decision-making processes in the practice of urban planning, and particularly at complex urban area development projects. The background to the design enables the UDR to support planning decisions that are made at urban planning element level. The participants in the interactive UDR sessions are asked to provide concrete solutions for urban planning design problems (in terms of preferences for particular functions, number of plots, etc.) and to enter them in a simulation model. A computer network is then used to calculate the common solution space of all the proposals, which is then projected onto a central screen. This outcome generally provides the basis for further discussions and negotiations, after which another round as described above can be held. The paper first focuses on the background and the main features of the UDR system. Secondly, the decision-making issue and a description of a specific Urban Decision Room model, the UDR Heijsehaven will be explained. Thirdly the structure of, and the experiences from, the experimental sessions with the Urban Decision Room Heijsehaven are described. After that the results of the evaluation of the UDR system by participants is presented and finally the follow-up assignment for the UDR system is carried out.
keywords Urban Decision Room, UDR Heijsehaven, Urban Renewal Project, Urban Planning, Urban Management Instrument, Common Solution Space, Decision Support System
series DDSS
last changed 2008/09/01 17:06

_id ecaade2008_012
id ecaade2008_012
authors Hudson, Roly
year 2008
title Frameworks for Practical Parametric Design in Architecture
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 847-854
doi https://doi.org/10.52842/conf.ecaade.2008.847
summary This paper is aimed at the development of a theoretical framework that addresses practical applications of parametric design that have been observed in architectural practice. Existing theoretical frameworks are not aimed at addressing this specific use of parametric tools but do provide a set of key themes. Based on these themes a simplified structure is presented here as a means for tackling architectural design development tasks. This is then used in order to examine a case study; the parametric design tasks involved in the design development and documentation of the new Lansdowne Road Stadium in Dublin Ireland. This project was undertaken in collaboration with HOK Sport Architects. The findings from this examination are used to discuss proposals and implications for a practical framework for parametric design in architecture.
keywords Parametric, Practice, Theory, Case Study, Lansdowne Road Stadium
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia08_472
id acadia08_472
authors Key, Sora; Mark D Gross; Ellen Yi-Luen Do
year 2008
title Computing Spatial Qualities For Architecture
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 472-477
doi https://doi.org/10.52842/conf.acadia.2008.472
summary Computational representation of spatial qualities can lead us to a better understanding of how we construct spatial concepts. Analyses of spatial qualities can support architects in reasoning about the form of a configuration, helping them predict the consequences of a design. ¶ In this paper we present three definitions (enclosure, viewfield, continuity) that describe experiential qualities of architectural spaces. Our project aims to provide computable definitions to these qualities to describe common spatial experiences that are implicitly understood by architects. The description, using familiar terms, reveals the analytical structure of spatial qualities that is based on the geometry of the physical elements. ; We therefore introduce a graphic editor, Descriptor, that provides visualization of spatial qualities as the designer diagrams building elements. The system calculates perceived relationships (surrounded, visible, nearby, nearest) between a viewpoint and the architectural elements based on their geometric properties such as location and distance. The relationships are the components of the three qualities we define. We also present a use scenario to demonstrate how one might use our Descriptor system during early design. ¶ Descriptor is an attempt to formalize descriptions of the spatial qualities to help beginners understand how to make design decisions. In the future, we plan to extend the set of qualities and add detailed attributes of the physical elements to the system.
keywords Analysis; Computation; Environment; Representation; Spatial
series ACADIA
last changed 2022/06/07 07:52

_id kozlov02_paper_eaea2007
id kozlov02_paper_eaea2007
authors Kozlo, Dmitri
year 2008
title Topological Method of Construction of Point Surfaces as Physical Models
source Proceedings of the 8th European Architectural Endoscopy Association Conference
summary The shape of architectural objects in general can be treated as an envelope – a two dimensional surface embedded into three dimensional space. We directly perceive only the surface as a synthesis of sequential “photo snaps” – the two dimensional imprints on a retina – a concave screen inside of our eyes. In 15th century Italian architect and theorist L. B. Alberti claimed that the architecture consists in the outlines and the structure (lineamenta et structura in the original Latin text). The visible shape (outlines) exists only because a directly not perceived structure determines it. Like Alberti, the modern mathematical theories of form distinguish the shape as an exterior surface and the form itself as an internal structure. This subtle difference becomes a very important subject in the relationship between a virtual and a physical model in the studies of architectural endoscopy.
keywords topology, manifold, knots, point surface, physical model
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 18HOMELOGIN (you are user _anon_561728 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002