CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id caadria2008_27_session3b_221
id caadria2008_27_session3b_221
authors Al-Haddad, Tristan
year 2008
title Parametric modulations in Masonry
doi https://doi.org/10.52842/conf.caadria.2008.221
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 221-228
summary The focus of the research presented in this paper asks how a designer can create a flexible system of physical making which can accommodate multiple programmatic functions within a smooth whole, rather than creating an a priori singular formal object. This adaptable system of construction works through the development of an intelligent CAD model that can be mapped to a flexible manufacturing mechanism, i.e. a reconfigurable mold. This system of manufacturing can be used to cast totally unique solid modules without creating a unique mold for each part by manipulating the topological structure of the system. This approach takes the notion of mass-customization beyond the expensive and unsustainable one-offs that the design world has seen recently, and into a new paradigm of a sustainable, economically viable world of mass-customizable form and space.
keywords Parametrics, Variability, Reconfigurability, UHPC, Topology, Molding, Casting
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia08_370
id acadia08_370
authors Wallick, Karl
year 2008
title Digital and Manual Joints
doi https://doi.org/10.52842/conf.acadia.2008.370
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 370-375
summary This paper considers the problem of detailing joints between manual and digital construction by tracking the provocations of KieranTimberlake’s SmartWrap research and the evolution of that knowledge into practical architectural instruments that can be deployed into more traditional construction projects. Over the past several years, KieranTimberlake Associates in Philadelphia has undertaken a path of research focusing on problems of contemporary construction systems and practices. One product of this research was a speculative wall system assembled for a museum exhibit. SmartWrap was to be a digitally prefabricated wall system with embedded technology. ¶ While they have yet to wrap a building with SmartWrap, KieranTimberlake have utilized a number of the construction principles and digital tools tested in the SmartWrap exhibit. One of the most important principles, prefabrication, was explored in a fast-track construction project at the Sidwell Friends School. The compressed schedule drove the design of an enclosure system which incorporated performative elements in similar categories to SmartWrap: insulation, an electrical system, view, daylighting, and a rainscreen. Besides being a prefabricated façade system, the rainscreen detailing became a formal system for organizing many other scales of the project including: site systems, thermal systems, daylighting systems, enclosure, and ornament. At a second project, a similar wood rainscreen strategy was used. However, at the Loblolly House the question of prefabrication and digital modeling was tested far more extensively: thermal systems were embedded into prefabricated floor cartridges, entire program elements – a library, kitchen, and bathroom were proposed as prefabricated systems of self-contained volume and infrastructure which were then inserted into the on-site framework. ; In all three projects the joint between manual-imprecise construction and digital-precise prefabrication became the area of richest invention (Figure 1). SmartWrap may not have yielded flexible, plastic architecture; but its conceptual and practical questions have yielded tangible implications for the design/construction processes and the built product in KieranTimberlake’s practice.
keywords Construction; Design; Integrative; Prefabrication; Skin
series ACADIA
last changed 2022/06/07 07:58

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2008_077
id sigradi2008_077
authors Briones, Carolina
year 2008
title A collaborative project experience in an architectural framework, working with Open Source applications and physical computing [Diseño de Plataformas Digitales e Interactivas: una experiencia educativa trabajando colaborativamente con aplicaciones de Código Abierto y Computación Física]
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Nowadays, thanks to the telecommunication revolution and therefore the massive spread of Internet, we have seen the come up of international architectural offices with branches located in different continent, working in a collaborative fashion, surpassing physical and time frontiers. At the same time, the multidisciplinary work between designers, architects, engineers, programmers and even biologist, between others, have been taking place in the new network society. All transformations also supported by the arising of FOSS (Free Open Source Software) and the virtual communities behind them, which allow the creation of non-traditional or specific software, the association between disciplines, and also, the formation of meeting scenarios for a mixture of individuals coming up with multiple motivation to coexist in collaborative environment. Furthermore, it is possible to argue that Open Source applications are also the reflection of a social movement, based on the open creation and exchange of information and knowledge. Do the appeared of FOSS compel us to re-think our working and teaching methods? Do they allow new modes of organizing and collaborating inside our architectural practices?. This paper would like to address these questions, by presenting the results of the “Experience Design” course, which by implementing teaching methods based on Open Source principles and cutting-edge tools, seeks to approach students to these new “way of do”, knowledge and methodologies, and overall, focus them on the science behind the computer. This paper describes the “Experience Design” course, in which architectural graduate students of Universidad Diego Portales (Chile), put for first time their hands on the creation of interactive interfaces. By acquiring basic knowledge of programming and physical computing, students built in a collaborative way a responsive physical installation. The course use as applications “Processing” and “Arduino”. The first one is an Open Source programming language and environment for users who want to program images, animation, and interactions. It has a visual context and serve as a software sketchbook and professional production tool. Processing is a project initiated by Ben Fry and Casey Reas, at the MIT Media Lab (www.processing.org). The second is an Open Source electronics prototyping platform based on flexible, easy-to-use hardware and software. Arduino has a microcontroller (programmed with Processing language) which can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators (www.arduino.cc). Both environments shared a growing community of people working in related projects and extending useful assistance for beginners. In this paper it is presented the current state of the pilot course and some of the initials results collected during the process. Students and teacher’s debates and evaluations of the experience have been exposed. Together with a critical evaluation in relation to the accomplishment of the effort of place together different disciplines in one collaborative project akin, architecture, design, programming and electronic. Finally, futures modifications of the course are discussed, together with consideration to take in account at the moment of bring Open Source and programming culture into the student curriculum.
keywords Physical computing, teaching framework, Open Source, Interactive Installation
series SIGRADI
email
last changed 2016/03/10 09:47

_id cdc2008_137
id cdc2008_137
authors Cardoso, Daniel
year 2008
title Certain assumptions in Digital Design Culture: Design and the Automated Utopia
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 137-148
summary Much of the research efforts in computational design for Architecture today aim to automate or bypass the production of construction documents as a means of freeing designers from the sticky and inconvenient contingencies of physical matter. This approach has yielded promising questions and applications, but is based on two related assumptions that often go unnoticed and that I wish to confront: 1. Designers are more creative if the simulations they rely on engage only with the superficial aspects of the objects they design (rather than with their structural and material-specific behaviors) and 2. The symbolic 3-D environments available in current design software are the ideal media for design because of their free nature as modeling spaces. These two assumptions are discussed both as cultural traits and in their relation to digital design technologies. The work presented is a step towards the far-sighted goal of answering the question: how can computation enable new kinds of dialogue between designer, design media and construction in a design process? In concrete, this paper proposes a critical framework for discussing contemporary digital design practices as a continuity –rather than as a rupture- of a long-standing tradition in architecture of separating design and construction.
email
last changed 2009/01/07 08:05

_id acadia08_292
id acadia08_292
authors Celento, David; Del Harrow
year 2008
title ceramiSKIN: Digital Possibilities for Ceramic Cladding Systems
doi https://doi.org/10.52842/conf.acadia.2008.292
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 292-299
summary CeramiSKIN is an inter-disciplinary investigation by an architect and a ceramics artist examining new possibilities for ceramic cladding using digital design and digital fabrication techniques. Research shown is part of an ongoing collaborative residency at The European Ceramics Work Centre. ¶ Ceramics are durable, sustainable, and capable of easily assuming detailed shapes with double curvature making ceramics seemingly ideal for digitally inspired “plastic” architecture. The primary reason for the decline in complex ceramic cladding is that manual mold-making is time-consuming—which is at odds with today’s high labor costs and compressed construction timeframes. We assert that digital advances in the area of mold-making will assist in removing some of the barriers for the use of complex ceramic cladding in architecture. ; The primary goals of ceramiSKIN as they relate to digitally assisted production are: greater variety and complexity, reduced cost and time, a higher degree of accuracy, and an attempt to facilitate a wider range of digital design possibilities through the use of a ceramics in architectural cladding systems. ¶ The following paper begins with an overview discussing double curvature and biophilia in architecture and their relationship to ceramics. This is followed by detailed commentary on three different experiments prior to a concluding summary.
keywords Biomorphic; Collaboration; Complex Geometry; Digital Fabrication; Skin
series ACADIA
last changed 2022/06/07 07:55

_id ecaade2008_103
id ecaade2008_103
authors Chase, Scott; Schultz, Ryan; Brouchoud, Jon
year 2008
title Gather ’round the Wiki-Tree
doi https://doi.org/10.52842/conf.ecaade.2008.809
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 809-816
summary The growth of internet based communication has facilitated the development of open source, collaborative projects. Here we describe the results of three ‘Wikitecture’ experiments in collaborative, open source architectural design within the virtual world Second Life. We describe the in-world platform developed and its use for a design competition entry. Issues such as contribution assessment and the role of open source collaborative design in architecture and construction are discussed, concluding with a wish list for future enhancements.
keywords Virtual worlds, wikis, open source architecture, collaborative design
series eCAADe
email
last changed 2022/06/07 07:55

_id ddss2008-47
id ddss2008-47
authors Den Otter, Ad F. and H.J. Pels
year 2008
title Rivalry between the collective use of IT tools and working methods of design teams Comparison of research outcomes
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary Nowadays a high variety of IT tools is available for communication purposes in design processes on individual and group level. Despite this, the exchange and sharing of design documents collectively in design and engineering teams might be limited mainly, due to habits, preferences, working methods and rivalry between the collective use of IT tools in such product development. Changes in habits and preferences for collective use of IT tools might be realized by training and management power. However, adoption of collectively to be used tools, like project websites, is depending heavenly on the attractiveness for users in daily work. Based on empirical research outcomes it is indicated that rivalry between collective used tools and differences in working methods of users might be main barriers for attractiveness of these tools in daily work. Applying a framework for analyzing and categorizing of the frequency of use of IT tools for team communication, the authors explain the appearance of rivalry between tools, limiting the effectiveness in daily work and not affecting team communication and performance. By comparison of working methods in different sectors authors explain the necessity of changes in working methods in design and engineering in the building & construction industry on organizational and inter-organizational level for successful adoption of collectively to be used IT tools in team communication.
keywords Rivalry between IT tools, collective use, team communication, team performance, working habits, preferences, working methods, 2nd order of change
series DDSS
last changed 2008/09/01 17:06

_id caadria2008_38_session4a_309
id caadria2008_38_session4a_309
authors Gero, John S; Nick Kelly
year 2008
title How can CAAD tools be more useful at the early stages of designing?: Towards Situated Agents That Interpret
doi https://doi.org/10.52842/conf.caadria.2008.309
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 309-316
summary This paper describes how designers can be supported in the early stages of designing through more flexible representations. It presents situated agency as a means to address this problem. Interpretation is a necessary process to give meaning to data before creating a representation. A framework for situated interpretation agents is outlined, with a focus on push-pull and the process of situation. An example for creating a CAAD representation from a raster image is used to illustrate this framework. This research lays a foundation for further work on situated interpretation agents.
keywords CAAD; interpretation; situated agents; design; representation
series CAADRIA
email
last changed 2022/06/07 07:51

_id ddss2008-21
id ddss2008-21
authors Horeni, Oliver; T.A. Arentze, H.J.P. Timmermans, and B.G.C. Dellaert
year 2008
title INTERVIEW TECHNIQUES FOR MEASURINGINDIVIDUALS’ MENTAL REPRESENTATIONSSPACE-TIME CHOICESAn outline of three IT-based survey methods
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary A better exploration of human decision making is a necessary condition to understand individual activity-travel choices. With the advent of mental model theory a conceptual framework of individuals’ causal knowledge of the environment and its links to the behavioural choice outcome was available. Accordingly, interview techniques had been developed in order to elicit mental representations from individuals’ mind. Although these techniques delivered reliable and useful results, it turned out quickly, that they could not be applied to large-scale surveys. Hence, this paper will report on the development of three IT-based interview techniques, which are promising avenues to measure mental representations in an efficient and flexible way.
keywords Activity-travel choice, Mental representations, Electronic surveying
series DDSS
last changed 2008/09/01 17:06

_id sigradi2008_166
id sigradi2008_166
authors Papanikolaou, Dimitris
year 2008
title Digital Fabrication Production System Theory: Towards an Integrated Environment for Design and Production of Assemblies
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary A Digital Fabrication Production System (DFPS) is a concept describing a set of processes, tools, and resources that will be able to produce an artifact according to a design, fast, cheap, and easy, independently of location. A DFPS project is a complex assembly of custom parts that is delivered by a network of fabrication and assembly processes. This network is called the value chain. The workflow concept of a DFPS is the following: begin design process with a custom geometric form; decompose it into constructible parts; send the part files for fabrication to various locations; transport all parts at the construction site at the right time; finally, assemble the final artifact. Conceptually it means that based on a well structured value chain we could build anything we want, at anyplace, at controllable cost and quality. The goals of a DFPS are the following: custom shapes, controllable lead time, controllable quality, controllable cost, easiness of fabrication, and easiness of assembly. Simply stated this means to build any form, anywhere, accurately, cheap, fast, and easy. Unfortunately, the reality with current Digital Fabrication (DF) projects is rather disappointing: They take more time than what was planned, they get more expensive than what was expected, they involve great risk and uncertainty, and finally they are too complex to plan, understand, and manage. Moreover, most of these problems are discovered during production when it is already late for correction. However, there is currently no systematic approach to evaluate difficulty of production of DF projects in Architecture. Most of current risk assessment methods are based on experience gathered from previous similar cases. But it is the premise of mass customization that projects can be radically different. Assembly incompatibilities are currently addressed by building physical mockups. But physical mockups cause a significant loss in both time and cost. All these problems suggest that an introduction of a DFPS for mass customization in architecture needs first an integrated theory of assembly and management control. Evaluating feasibility of a DF project has two main problems: first, how to evaluate assemblability of the design; second, how to evaluate performance of the value chain. Assemblability is a system’s structure problem, while performance is a system’s dynamics problem. Structure of systems has been studied in the field of Systems Engineering by Network Analysis methods such as the Design Structure Matrix (DSM) (Steward 1981), and the liaison graph (Whitney 2004), while dynamics of systems have been studied by System Dynamics (Forrester 1961). Can we define a formal method to evaluate the difficulty of production of an artifact if we know the artifact’s design and the production system’s structure? This paper formulates Attribute Process Methodology (APM); a method for assessing feasibility of a DFPS project that combines Network Analysis to evaluate assemblability of the design with System Dynamics to evaluate performance of the value chain.
keywords Digital Fabrication, Production System, System Dynamics, Network Analysis, Assembly
series SIGRADI
email
last changed 2016/03/10 09:57

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
doi https://doi.org/10.52842/conf.acadia.2011.152
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id caadria2008_51_session5a_417
id caadria2008_51_session5a_417
authors Schimek, Heimo; Milena Stavric, Albert Wiltsche
year 2008
title The Intelligence of ornaments: Exploring ornamental ways of Affordable Non-Standard Building Envelopes
doi https://doi.org/10.52842/conf.caadria.2008.417
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 417-425
summary The purpose of this research is to explore ornamental patterns which can be used to enhance materials characteristics in low-cost building envelopes. We use standard building materials (sheets of cross-laminated timber) and develop a parametric design framework for the assembly. Existing rules of ornamental geometry are applied to a parametric controlled structural model so as to endow the building parts both with stability and aesthetics. The concepts of mass customization and “File to factory” support the digital fabrication of a non-repetitive pattern in façade construction and lead to reduced construction costs and building time.
keywords Ornament, symmetry, parametric design, building shell, affordable non-standard architecture, mass customization
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia08_214
id acadia08_214
authors Schlueter, Arno; Frank Thesseling
year 2008
title Balancing Design and Performance in Building Retrofitting: A Case Study Based on Parametric Modeling
doi https://doi.org/10.52842/conf.acadia.2008.214
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 214-221
summary Retrofitting the existing building stock will become one of the key fields of action for architects in the future. Due to the raised awareness of CO2 emissions related to the energy consumption of buildings, architects have to increasingly consider parameters influencing the energy performance of their retrofit designs. This is a complex task especially in the early design stages as multiple dependencies between building form, construction and technical systems influence overall energy performance. The inability to cope with this complexity often leads to simple solutions such as the application of massive insulation on the outside, neglecting aesthetic expression and design flexibility. Digital models storing multidisciplinary building information make it possible to include performance parameters throughout the architectural design process. In addition to the geometric parameters constituting the form, semantic and topological parameters define building element properties and their dependencies. This offers an integrated view of the building. We present a case study utilizing mulit-parametric façade elements within a building information model for an integrated design approach. The case study is based on a retrofit project of a multi-family house with very poor energy performance. Within a design workshop a parametric building model was used for the development of the designs. An integrated analysis tool allowed an immediate performance assessment without importing or exporting building data. The students were able to freely define geometric and performance parameters to develop their design solution. Balancing between formal expression and energy performance lead to integrated design sketches, resulting in surprising solutions for the given design task.
keywords BIM; Integrative; Parametric; Performance; Sustainability
series ACADIA
last changed 2022/06/07 07:57

_id ecaade2008_125
id ecaade2008_125
authors Wu, Kuan-Ying
year 2008
title Elastic Room
doi https://doi.org/10.52842/conf.ecaade.2008.905
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 905-912
summary This paper proposes a physical toolkit and a flexible software framework to simplify the design and exploration of interactive systems for multiple users, devices, and applications in a smart environment. The toolkit, called Elastic-Room, was designed as an infrastructure for interaction design, in which each device is a component that works collaboratively in the smart environment. The supporting software framework includes a dynamically reconfigurable intermediary which simplify the mapping of each device and also use simple protocol to broadcast information to each device. Finally, we demonstrate the Elastic-Room architecture by providing some implemented examples, which are organized in a prototype space of ubiquitous computing full of interactive components.
keywords Ubiquitous computing, tangible user interfaces, smart environments, interactive design
series eCAADe
email
last changed 2022/06/07 07:57

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
doi https://doi.org/10.52842/conf.acadia.2008.066
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_448
id acadia08_448
authors Alfaris, Anas; Riccardo Merello
year 2008
title The Generative Multi-Performance Design System
doi https://doi.org/10.52842/conf.acadia.2008.448
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 448-457
summary This paper proposes a framework for an integrated computational design system. This design system builds on the strengths inherent in both generative synthesis models and multi-performance analysis and optimization. Four main design mechanisms and their mathematical models are discussed and their integration proposed. The process of building the design system begins by a top-down decomposition of a design concept. The different disciplines involved are decomposed into modules that simulate the respective design mechanisms. Subsequently through a bottom-up approach, the design modules are connected into a data flow network that includes clusters and subsystems. This network forms the Generative Multi-Performance Design System. This integrated system acts as a holistic structured functional unit that searches the design space for satisfactory solutions. The proposed design system is domain independent. Its potential will be demonstrated through a pilot project in which a multi-performance space planning problem is considered. The results are then discussed and analyzed.
keywords Analysis; Behavior; Generative; Optimization; Performance
series ACADIA
type normal paper
last changed 2022/06/07 07:54

_id ddss2008-25
id ddss2008-25
authors Antoni, Jean-Philippe; P. Frankhauser, C. Tannier, S. Youssoufi
year 2008
title Simulating and assessing prospective scenariosA comparative approach in urban planning
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary The first part of the paper is centred on the phenomena of urban growth, in order to set the rules for a sustainable scenario of urban development. Then we enter the core of the paper that is the comparison of models. For each of the three compared models, we describe its main theoretical characteristics, the chosen parameters, and the obtained results. In section 6, heterogeneity of the produced results is discussed, and we highlight the points of interest and the lacks of the three models. Here we show that results we obtained feed debates about urban growth management. Finally, concluding remarks at the end of the paper address the general topic of the evaluation of the quality of simulation results.
keywords Urban sprawl, sustainable development, fractals, cellular automata, spatial interaction models
series DDSS
last changed 2008/09/01 17:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_187525 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002