CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id sigradi2008_049
id sigradi2008_049
authors Benamy, Turkienicz ; Beck Mateus, Mayer Rosirene
year 2008
title Computing And Manipulation In Design - A Pedagogical Experience Using Symmetry
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The concept of symmetry has been usually restricted to bilateral symmetry, though in an extended sense it refers to any isometric transformation that maintains a certain shape invariant. Groups of operations such as translation, rotation, reflection and combinations of these originate patterns classified by modern mathematics as point groups, friezes and wallpapers (March and Steadman, 1974). This extended notion represents a tool for the recognition and reproduction of patterns, a primal aspect of the perception, comprehension and description of everything that we see. Another aspect of this process is the perception of shapes, primary and emergent. Primary shapes are the ones explicitly represented and emergent shapes are the ones implicit in the others (Gero and Yan, 1994). Some groups of shapes known as Semantic Shapes are especially meaningful in architecture, expressing visual features so as symmetry, rhythm, movement and balance. The extended understanding of the concept of symmetry might improve the development of cognitive abilities concerning the creation, recognition and meaning of forms and shapes, aspects of visual reasoning involved in the design process. This paper discusses the development of a pedagogical experience concerned with the application of the concept of symmetry in the creative generation of forms using computational tools and manipulation. The experience has been carried out since 1995 with 3rd year architectural design students. For the exploration of compositions based on symmetry operations with computational support we followed a method developed by Celani (2003) comprising the automatic generation and update of symmetry patterns using AutoCAD. The exercises with computational support were combined with other different exercises in each semester. The first approach combined the creation of two-dimensional patterns to their application and to their modeling into three-dimensions. The second approach combined the work with computational support with work with physical models and mirrors and the analysis of the created patterns. And the third approach combined the computational tasks with work with two-dimensional physical shapes and mirrors. The student’s work was analyzed under aspects such as Discretion/ Continuity –the creation of isolated groups of shapes or continuous overlapped patterns; Generation of Meta-Shapes –the emergence of new shapes from the geometrical relation between the generative shape and the structure of the symmetrical arrangement; Modes of Representation –the visual aspects of the generative shape such as color and shading; Visual Reasoning –the derivation of 3D compositions from 2D patterns by their progressive analysis and recognition; Conscious Interaction –the simultaneous creation and analysis of symmetry compositions, whether with computational support or with physical shapes and mirrors. The combined work with computational support and with physical models and mirrors enhanced the students understanding on the extended concept of symmetry. The conscious creation and analysis of the patterns also stimulated the student’s understanding over the different semantic possibilities involved in the exploration of forms and shapes in two or three dimensions. The method allowed the development of both syntactic and semantic aspects of visual reasoning, enhancing the students’ visual repertoire. This constitutes an important strategy in the building of the cognitive abilities used in the architectural design process.
keywords Symmetry, Cognition, Computing, Visual reasoning, Design teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia08_340
id acadia08_340
authors Chalmers, Chris
year 2008
title Chemical Signaling as a Model for Digital Process in Architecture
doi https://doi.org/10.52842/conf.acadia.2008.340
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 340-345
summary The role of the architect is quite literally one of assembly: synthesizing the various parts of a project into a cohesive whole. It is a difficult job, often requiring the architect to weave many seemingly contradictory concerns into a solution that benefits them all. It is not surprising then, that the many elegant and effective systems found in nature should be inspiring to the architect. Emerging fields like biomimicry and systems dynamics model the patterns of interaction between organisms and their environments in terms of dynamic part to part and part to whole relationships. ¶ Observations of real relationships between organisms and their environments, as they exist in nature, reveal complex feedback loops working across multiple scales. These feedback loops operate by the simultaneous action of two observed phenomena. The first is the classic phenotypic relationship seen when organisms of the same genetic makeup instantiate differently based upon differences in their environment. This is the relationship that was originally proposed by Charles Darwin in his theory of natural selection of 1859. Darwin’s model is unidirectional: the organism adapts to its environment, but not the other way around. It operates at the local scale as individual parts react to the conditions of the whole. (Canguilhem, 1952). ¶ The second phenomenon, which sees its effect at the global scale, is the individual’s role as consumer and producer in the flows of energy and material that surround it. It is the subtle and incremental influence of the organism upon its environment, the results of which are often invisible until they reach a catastrophic threshold, at which point all organisms in the system feel global changes. ; The research presented in this paper addresses the dialectic between organism and environment as each responds reciprocally to the others’ changing state. Such feedback loops act in a non-linear fashion, across nested scales in biological systems. They can be modeled to act that way in a digital design process as well. This research is an exploration into one such model and its application to architecture: the simple communication between organisms as they affect and are affected by their environments through the use of signal chemicals.
keywords Biology; Cellular Automata; Feedback; Material; Scripting
series ACADIA
last changed 2022/06/07 07:55

_id ddss2008-40
id ddss2008-40
authors Marin, Ph.; J.C. Bignon, H. Lequay
year 2008
title Integral evolutionary design, integrated to early stageof architectural design processGenerative exploration of architectural envelope responding tosolar passive qualities
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary This paper tackles the exploration of generative digital tools in the field of architectural design. Evolutionary mechanisms are expected to help the designer and to support his creativity. Our purpose is to implement a digital tool based on a genetic algorithm, which uses environmental parameters and human interplay to evolve an architectural form. The analysis of design processes and CAD use lead us to mark a transformation of design process at a cognitive level.
keywords Genetic algorithm, generative architectural design process, environmental parameters
series DDSS
last changed 2008/09/01 17:06

_id ecaade2008_006
id ecaade2008_006
authors Marin, Philippe; Bignon, Jean-Claude; Lequay, Hervé
year 2008
title Integral Evolutionary Design, Integrated to Early Stage of Architectural
doi https://doi.org/10.52842/conf.ecaade.2008.019
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 19-26
summary This paper deals with the architectural design process and the digital tools able to support a creative activity. Evolutionary devices are expected to support the architect in the initial phase of his work in progress and to stimulate his creativity through analogical thinking. An experimental tool is described, this one is using a genetic algorithm to explore the solution space, and it is based on both solar passive qualities and subjective interaction.
keywords Architectural design process, evolutionary design, genetic algorithm, analogical thinking, environmental parameters
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia08_332
id acadia08_332
authors Marin, Philippe; Jean-Claude Bignon ;Hervé Lequay
year 2008
title A Genetic Algorithm for Use in Creative Design Processes
doi https://doi.org/10.52842/conf.acadia.2008.332
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 332-339
summary This paper deals with natural growth mechanisms applied to architectural design processes. We implement a genetic algorithm as part of a digital tool to be used in the creative design process. This evolutionary process is evaluated by means of environmental parameters, passive solar qualities and the designer’s individual requirements. A morphogenetic process is put forward, based on a “metamorphosis strategy”.
keywords Algorithm; Analysis; Environment; Genetic; Performance
series ACADIA
last changed 2022/06/07 07:59

_id cdc2008_349
id cdc2008_349
authors Pantazi, Magdalena
year 2008
title Using Patterns of Rules in the Design Process
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 349-356
summary In the past three decades computational processes were introduced and were widely applied in the field of architecture. This fact imposed questions about the types of strategies that architects apply during the early phase of the design process. The answer to this question became crucial as computational processes, based on algorithms, use explicit rules while in traditional ways the role of rule during the creative phase of design remains unidentified. If we want to effectively introduce computational processes into design then the role of rule in design should be identified. In this paper, I present an experiment where I examine the patterns of rules that architects use during the exploration of a design idea, from the formation of the design problem towards the design solution. Furthermore, I investigate the role that constraints play in the formulation of these design patterns of rules.
email
last changed 2009/01/07 08:05

_id ddss2008-26
id ddss2008-26
authors Slager, C.T.J.; B. de Vries, A.K. Bregt and A.J. Jessurun
year 2008
title Methodology to generate landscape configurations foruse in multi-actor plan-making processes
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary In this paper, we investigate an approach to generate landscape configurations for use in multi-actor plan-making processes. Using the information from predefined lot typologies, a heuristic allocation method, consisting of a suitability function and an allocation mechanism of lot components is explained. The suitability function is primarily based on adjacency and distance parameters as found in landscape design literature. The allocation mechanism starts from a random but constrained initial situation, and generates a plausible lot configuration by orderly swapping pairs of cells thereby increasing the overall suitability of the plan . From the results, the limitations of this approach are concluded and the concepts are presented for an improved landscape generation algorithm.
keywords Landscape configurations, spatial allocation, Landscape grammar, Cellular automata, Genetic Algorithms, Simulated Annealing
series DDSS
last changed 2008/09/01 17:06

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
doi https://doi.org/10.52842/conf.acadia.2008.066
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id ecaade2008_025
id ecaade2008_025
authors Asanowicz, Aleksander
year 2008
title How to Find an Idea? - Computer Aided Creativity
doi https://doi.org/10.52842/conf.ecaade.2008.735
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 735-742
summary In this paper the possibilities of using computer software in creative searching of design ideas is analysed. At the basis of such psychological theories as Incubation, Synectics, Geneplore, Bisociation, Conceptual Blending, Visual Synectics the implementation of digital technologies in the idea searching – the main stage of design process – is presented. In all computer ‘metaphorisation’ methods presented in this paper pictures are treated as idea triggers. Designer generate the ideas of the form by use the pictures as triggers for free association or for metaphorisation. The two cases of implementation of these methods, which based on graphic transformations, will be presented.
keywords Creativity, design methods, form searching
series eCAADe
email
last changed 2022/06/07 07:54

_id cdc2008_129
id cdc2008_129
authors Breen, Jack and Julian Breen
year 2008
title The Medium Is the Matter: Critical Observations and Strategic Perspectives at Half-time
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 129-136
summary This paper critically re-views the professional impact and functionality of the pervasive digital ‘matter’ we have come to believe we can no longer do without. On the basis of a playful exploration of the first ‘half-century’ of our digital age, an attempt is made to draw new perspectives for the next ’level’ of our digital culture in a broader (multi)media perspective and more specifically: the domains of Architecture. To stimulate an open-minded ‘second-half’ debate, the paper puts forward some potentially promising (and hopefully provocative) conceptions and strategies for imaginative interface applications and game-based architectural study initiatives. Furthermore, the paper proposes the establishment of a new cultural platform for the exchange of Critical Digital hypotheses and the evolvement of visionary design concepts through creative digital innovation, with the (inter)active involvement of older and younger team-players…
email
last changed 2009/01/07 08:05

_id cdc2008_137
id cdc2008_137
authors Cardoso, Daniel
year 2008
title Certain assumptions in Digital Design Culture: Design and the Automated Utopia
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 137-148
summary Much of the research efforts in computational design for Architecture today aim to automate or bypass the production of construction documents as a means of freeing designers from the sticky and inconvenient contingencies of physical matter. This approach has yielded promising questions and applications, but is based on two related assumptions that often go unnoticed and that I wish to confront: 1. Designers are more creative if the simulations they rely on engage only with the superficial aspects of the objects they design (rather than with their structural and material-specific behaviors) and 2. The symbolic 3-D environments available in current design software are the ideal media for design because of their free nature as modeling spaces. These two assumptions are discussed both as cultural traits and in their relation to digital design technologies. The work presented is a step towards the far-sighted goal of answering the question: how can computation enable new kinds of dialogue between designer, design media and construction in a design process? In concrete, this paper proposes a critical framework for discussing contemporary digital design practices as a continuity –rather than as a rupture- of a long-standing tradition in architecture of separating design and construction.
email
last changed 2009/01/07 08:05

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id acadia08_458
id acadia08_458
authors Hemsath, Timothy; Robert Williams; Ronald Bonnstetter; Leen-Kiat Soh
year 2008
title Digital CADCAM Pedagogy Model: Intelligent Inquiry Education
doi https://doi.org/10.52842/conf.acadia.2008.458
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 458-463
summary Prototype manufacturing as an educational tool has been very successful at the college level in architecture and engineering design. This paper discusses an innovative inquiry-based learning approach rather than the problem-based learning models commonly utilized by other similar programs. For example, several research-funded technology projects (e.g., Cappelleri et al. 2007) look at involving students in problem-based learning exercises (e.g., building robots); however, these exercises (while providing valuable experiences) have predetermined outcomes ingrained by the teachers, the project structure, and the components used to construct the devices. Therefore, inquisitive and creative problem solving is limited to the “kit-of-parts” in their approach to solving the problem. The inquiry-based CADCAM pedagogy model is more concerned with the process of solving a problem through the vehicle of prototyping than with the specificity of the design project itself. This approach has great potential. First, the need to solve the problem drives learning on multiple levels, integrating interdisciplinary ideas into the problem and solution. Second, the problem interlocks disciplines through inquiry knowledge building in team exercises. Finally, it encourages diversity and flexibility by allowing students to look at problems from multiples perspectives and points of view.
keywords CAD; Education; Evaluation; Pedagogy; Rapid Prototyping
series ACADIA
last changed 2022/06/07 07:49

_id sigradi2008_081
id sigradi2008_081
authors Kirschner, Ursula
year 2008
title Study of digital morphing tools during the design process - Application of freeware software and of tools in commercial products as well as their integration in AutoCAD
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This research work examines methods of experimental designing with CAAD in a CAD laboratory with architecture students as the testing persons. Thereby the main focus is on the early phase of finding forms, in which different techniques with digital media are tried out in the didactic architectural design lessons. In these work have been traced the influences of the media employed on the design processes and combined the approaches of current CAAD research with aspects from classic design theory. For mathematical rules of proportion, atmospheric influence factors and analogy concepts in architecture, I have developed design methods which have been applied and verified in several series of seminars. (Kirschner, U.: 2000, Thesis, a CAAD supported architectural design teaching, Hamburg, school of arts). Previous experimental exercises showed that morphological sequences of modeling are effective sources for playful designing processes. In the current work these approaches are enhanced and supplemented by different morphological architectural concepts for creating shapes. For this purpose 2D based software like Morphit, Winmorph and other freeware were used. Whereas in the further development of this design technique we used 3D freeware morphing programs like zhu3D or Blender. The resulting morphological shapes were imported in CAD and refined. Ideally the morphing tool is integrated in the modeling environment of the standard software AutoCAD. A digital city model is the starting basis of the design process to guarantee the reference to the reality. The applied design didactic is predicated on the theories of Bernhard Hoesli. The act of designing viewed as „waiting for a good idea“ is, according to him, unteachable; students should, in contrast, learn to judge the „the force of an idea“. On the subject of morphology a form-generating method in the pre-design phase has been tested. Starting from urban-planning lines on an area map, two simple geometric initial images were produced which were merged by means of morphing software. Selected images from this film sequence were extruded with CAAD to produce solid models as sectional drawings. The high motivation of the students and the quality of the design results produced with these simple morphing techniques were the reason for the integration of the artistic and scientific software into the creative shape modeling process with the computer. The students learned in addition to the „bottom up “and „ top down” new design methods. In the presentation the properties and benefits of the morphing tools are presented in tables and are analyzed with regard to the architectural shape generating in an urban context. A catalogue of criteria with the following topics was developed: user friendliness, the ability of integrating the tools or as the case may be the import of data into a CAD environment, the artistic aspects in terms of the flexibility of shape generating as well as the evaluation of the aesthetic consideration of shapes.
keywords Architectural design, freeware morphing software, AutoCAD
series SIGRADI
email
last changed 2016/03/10 09:53

_id sigradi2008_087
id sigradi2008_087
authors Lautenschlaeger, Graziele; Anja Pratschke
year 2008
title Electronic Art and Second Order Cybernetic: From Art in Process to Process in Art.
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The goal of the paper presented below is to discuss partial results of a research which has been financed by the state sponsored agency FAPESP since 2007. Inserted in the research line Design Process, it aims to analyse connections between design process in electronic art and architecture, concerning the creation of mixed media spatialities, as well as present how each field can get the benefits from this analyses. Based on Grounded Theory methodology, a method of qualitative research which aims to understand “reality” from the meanings attributed by people for their experiences, the research has been started collecting data from bibliographical references, interviews with media artists, theoreticians and curators of electronic art and visits to media labs. Interviews and visits of media centers were taken in Europe while the researcher was as an exchange student in the Interface Culture Department in Kunstuniversität Linz, from March to September of 2008. By crossing data collected from the interviews and visits, with the cybernetic social system theory by Niklas Luhmann, and the discussion of an example of mixed media spatiality creation in the art field, this paper analyses how creative processes in digital era depends on different interdisciplinary relationships and how collaborative approaches are needed nowadays in the arts and architectural areas, seeing that artworks are always being influenced by their respective specific “mediality”. The aim of this paper is to discuss the relevance of the use of the cybernetic theory in digital culture, when concepts like participation, interaction and communication are some of the keywords, towards a “collective and distributed authorship”, and their reflects in the contemporary spatiality. The special interest in the comparison of art experience and second order cybernetics as a reference to architecture field is one of the findings of the paper. And, concerning the practical implication, due to cybernetics’ constant questioning of viability, adaptability and recursion, it should be able to point some ways to architects and artists´ works, especially if we consider that they never work in “ideal” conditions.
keywords Electronic art. Design process. Second order Cybernetic. Niklas Luhmann.
series SIGRADI
email
last changed 2016/03/10 09:54

_id sigradi2008_097
id sigradi2008_097
authors Nogueira de Carvalho, Ana Paula; Marcelo Tramontano, Marlon Rubio Longo
year 2008
title D.O.S. Designers on Spot: Communication processes and Learning actions [Processos de Comunicação e Ações de Aprendizagem]
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary D.O.S. Designers on Spot: Communication processes and Learning actions This paper introduces some concepts that have been studied at D.O.S. project as part of the learning and communication actions. These concepts are relevant to the project as they brought to the team some improvements about design experiences based on network communication, as well as some reflections done by designers and researchers in different parts of the world. The project proposed by our research group is part of growing demands for experiments able to explore the Advanced Internet for fast transferring large packages of content. The activities are divided in two different instances: one is called exploratory research and aims to identify enrichments that a collaborative practice would add to the design process and to the production of interactive prototypes as well. The other one is related to remote learning strategies. It aims at investigating new methods of collective design and prototyping of objects with integrated media, and the diffusion of these techniques and methods in classroom environments, as a teaching strategy. Following are three different aspects about design experiences. The first one, called communication processes, presents a panoramic view about different ways the participants of a remote design session can share information. It targets to point and to systematize design actions by exploring transversal characteristics among designers, teams and the resulting objects. In order to achieve it, we have to understand some relations between remote communication and design processes, which explore issues in the project phases of conception, production and interaction. This exploration is part of the search for a conceptual scope for the D.O.S. project development, with an emphasis on the communication specificities between remote designers and the design process. The second one, learning action processes, introduces some issues about academic teaching and learning of design through remote and collaborative media. The third one, Virtual Design Studio (VDS), is related to the previous and aims to present a specific kind of remote design sessions targeting to create strategies to use new communication and information technologies (ICT) on remote project instances. The teaching of Architecture and Design is, above all, multidisciplinary – this means that it is not limited to the knowledge of one field of activity but, by a wide range of subjects from different areas - including Computing. The introduction of ICT (Information and Communication Technologies) in the project process is commonly associated to the final stages, and not to the creation. The contribution of the digital environment is provided for the use of various software, which are not restricted to those responsible for graphical representation: programs responsible for the organization of data in tables, for example, enable monitoring developments with clarity. The multidisciplinary consideration supports new variables in the process of design, working quickly and accurately on the possibilities, which modifies the agency of decisions and management tasks.
keywords Advanced internet, collaborative design, virtual design studio
series SIGRADI
email
last changed 2016/03/10 09:56

_id caadria2008_57_session6a_472
id caadria2008_57_session6a_472
authors Prats, S. Lim, M.; S. Chase, S. Garner
year 2008
title Sketching in Design: Formalising a Transformational Process
doi https://doi.org/10.52842/conf.caadria.2008.472
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 472-478
summary The process of sketching can support the sort of transformational thinking that is seen as essential for the interpretation and reinterpretation of ideas in innovative design (Suwa 2003). In this paper, the initial outputs and findings of an ongoing project called Design Synthesis and Shape Generation are described based on experimental investigations of the mechanics of sketching from practicing architects and industrial designers as they responded to a series of conceptual design tasks. Preliminary analyses of the experimental data suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules. These rules formalise the transformations and reinterpretation of shapes for example through deformation or restructuring.
keywords Sketching; Exploration; Computer supported design; Shape rule
series CAADRIA
email
last changed 2022/06/07 08:00

_id ijac20076102
id ijac20076102
authors Schein, Markus; Tessmann, Oliver
year 2008
title Structural Analysis as Driver in Surface-Based Design Approaches
source International Journal of Architectural Computing vol. 6 - no. 1, pp. 19-39
summary This research argues for novel strategies to integrate structural analysis data in architectural design. Instead of a linear procedure of analysis, synthesis, evaluation and post-rationalization a synthesis/evaluation loop is installed which embeds structural analysis data as design driver from early on. The approach regards structural performance as one design criteria within a network of different requirements. An equilibrium of multiple parameters is aspired to instead of a single-parameter-optimum. The research is conducted via a custom-made digital interface between 3d modelling software and an application for structural analysis of space frames. The information exchange provides the basis for successive strategies within a collaborative design process of spatial roof structures: negotiation of an overall form and a multi-dimensional improvement of space frame topologies by a Genetic Algorithm (GA).
series journal
last changed 2008/06/18 08:12

_id ddss2008-19
id ddss2008-19
authors Varano, Sandro; J.C. Bignon and G. Halin
year 2008
title A three-dimensional map to help exploration andunderstanding of a buildingVisibility of the process of knowledge construction through traces
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary Through the use of existing digital tools, the research work consists of proposing a new 3D navigation mode based on systemic, practical and graphic assumptions. During the exploration of the Vianden Castle, we outline a graphic representation system as an aid to representation and memorization of archaeological and architectural knowledge. For this, we recompose some concepts related to video games, we materialize the “mental map” described by Patricia Marks Greenfield and we take into account the cognitive capacities of the learner.
keywords Archaeological and architectural heritage, 3D navigation, learning, video games, mental map
series DDSS
last changed 2008/09/01 17:06

_id acadia08_346
id acadia08_346
authors Von Buelow, Peter
year 2008
title Breeding Topology: Special Considerations For Generative Topology Exploration Using Evolutionary Computation
doi https://doi.org/10.52842/conf.acadia.2008.346
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 346-353
summary Topology optimization of engineering structures has long been a topic of research scrutiny. Many methods have been successfully developed for the determination of continuum structures. Some of these techniques, for example the homogenous method, have also been adapted for use with discrete structural frames or trusses. Most commonly the topology optimization of truss structures is carried out with the aid of a ground structure, a simple raster that describes potential joint locations. Although this simplifies the computation, it greatly limits the range of potential solutions that fit the gridded raster. Additionally, when using Evolutionary Computation (EC) methods, the level of computational intensity increases exponentially with the size of the ground structure making anything above a very modest level of complexity impractical to process. ¶ This paper demonstrates several practical techniques that can be used with EC, and more specifically Genetic Algorithms, when applied to topology exploration of discrete structures. First a method of chromosome coding that avoids the use of ground structures is shown. Then specific genetic recombination techniques are illustrated that are well suited for breeding different topologies. The combined techniques are demonstrated in a topology design problem. The paper concludes with a discussion of advantages of EC over traditional optimization methods in the area of overall form design.
keywords Algorithm; Evolution; Generative; Genetic; Topology
series ACADIA
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_310234 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002