CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id acadia08_174
id acadia08_174
authors Jaskiewicz, Tomasz
year 2008
title ‘iPortals’ as a Case Study Pre-Prototype of an Evolving Network of Interactive Spatial Components
doi https://doi.org/10.52842/conf.acadia.2008.174
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 174-181
summary The art and craft of design and creation of buildings is undergoing a radical paradigm shift. This shift is being driven by diverse novel cross-disciplinary technical possibilities, as well as by ongoing cultural transformations. They all, directly or indirectly, originate from omnipresent advancements in information technologies. Instant and ubiquitous availability of information and immediate access to computing power pervasively penetrating our lives is profoundly transforming our culture. This phenomenon has enormous implications for architecture in a multitude of ways1. ¶ Firstly, the speed of changes that occur in modern-day culture and society makes it inconvenient or even entirely impossible to design buildings with fixed and permanent functionalities. As lifestyle patterns, production methods and environmental conditions, to name a few factors only, may now dramatically change from one day to another, architecture has to become flexible. It has to allow dynamic, active, or even pro-active adaptation and customization of spaces on many levels of its functionality2. ¶ Secondly, these profound cultural changes are not only of technical relevance. In its process-driven character, information technology strongly mandates the already widely recognized ontology of becoming, proclaimed by the prominent minds of contemporary philosophy and science. This process-oriented worldview, supported by latest technological possibilities3, has caused a radical change in the common sense of the manner in which architecture has to be understood and dealt with4. As an effect, it requires an in-depth reconsideration of the nature of processes of both creation and participation in spatial environments.
keywords Environment; Interactive; Open Systems; Prototype; Skin
series ACADIA
last changed 2022/06/07 07:52

_id caadria2008_45_session4b_364
id caadria2008_45_session4b_364
authors Muramoto, Katsuhiko; Sonali Kumar, Michael Jemtrud, Danielle Wiley
year 2008
title Participation, Intersubjectivity, And Presence In a Digitally Mediated Workspace: A Participatory Design Studio between Pennsylvania State University and Carleton University
doi https://doi.org/10.52842/conf.caadria.2008.364
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 364-370
summary A paradigm shift in the world of architecture brought by the recent developments in visualization and communication technology not only offers us drastically different ways to collaborate, but also questions traditional location dependent collaborations. This new technology offers us new possibilities for a more phenomenologically rich mode of creative activity and participation. The goal of the Participatory Design Studio was to allow architecture students in multiple locations to collaborate in real-time by sharing computational resources, geometric datasets, and multimedia content including high-definition video. The technologies involved in this research include the National LambdaRail (layer 3, PacketNet with 1Gb/s connection) and CA*net 4 (Canadian broadband layer 2 with 10gb/s lightpath connectivity) allowing Standard Definition videoconference, utilization of Deep Computing Visualization, Remote Visual Networking (RVN) and Web Service access and control of the APN devices through the dashboard solution that makes integration seamless to the workflow and transparent to the user.
keywords design: collaboration; tele-presence; visualization; broadband
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2008_180
id sigradi2008_180
authors Vincent, Charles
year 2008
title Gulliver in the land of Generative Design
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The current trend in architectural design towards architectural computing has been treated both from a philosophical standing point and as an operational systems’ problem, in a quest for explications which could at last break ground for a more broad development and adoption of design tools. As Kostas Terzidis (2007) puts it, the intuitiveness that architects have put on so high a pedestal seems to be the central issue to be dealt with by both views. There seems to be no apparent shortcut toward the reconciliation between traditional practice and new media and most certainly it is not only a problem of interface design, but one of design method clarification and reinterpretation of those methods into computing systems. Furthermore, there’s no doubt left as to whether computing systems can generate such new patterns as to impact our own understanding of architecture. But even if computer algorithms can make possible the exploration of abstract alternatives to an abstract initial idea, as in Mathematica and Processing, the issue of relating abstract and geometric representations of human centered architecture lays in the hands of architects, programmers or, better yet, architect-programmers. What seems now to be the relevant change is that architectural design might escape from the traditional sequence embedded in the need – program – design iterations – solution timeline, substituted by a web of interactions among differing experimental paths, in which even the identification of needs is to be informed by computing. It is interesting to note that the computational approach to architectural design has been praised for the formal fluidity of bubbles and Bezier shapes it entails and for the overcoming of functionalist and serialization typical of modern architecture. That approach betrays a high degree of canonic fascination with the tools of the trade and very little connection to the day to day chores of building design. On the other hand, shall our new tools and toys open up new ways of thinking and designing our built landscape? What educational issues surface if we are to foster wider use of the existing technologies and simultaneously address the need to overtake mass construction? Is mass customization the answer for the dead end modern architecture has led us to? Can we let go the humanist approach begun in Renascence and culminated in Modernism or shall we review that approach in view of algorithmic architecture? Let us step back in time to 1726 when Swift’s ‘Travels into Several Remote Nations of the World by Lemuel Gulliver’ was first published. In Swift’s fierce critic of what seemed to him the most outrageous ideas, he conceived a strange machine devised to automatically write books and poetry, in much the same generative fashion that now, three centuries later, we begin to cherish. “Every one knew how laborious the usual method is of attaining to arts and sciences; whereas by his contrivance, the most ignorant person at a reasonable charge, and with a little bodily labour, may write books in philosophy, poetry, politicks, law, mathematics and theology, without the least assistance from genius or study. He then led me to the frame, about the sides whereof all his pupils stood in ranks. It was twenty foot square, placed in the middle of the room. The superficies was composed of several bits of wood, about the bigness of a dye, but some larger than others. They were all linked together by slender wires. These bits of wood were covered on every square with paper pasted on them; and, on these papers were written all the words of their language in their several moods, tenses, and declensions, but without any order. The professor then desired me to observe, for he was going to set his engine at work. The pupils at his command took each of them hold of an iron handle, whereof there were forty fixed round the edges of the frame; and giving them a sudden turn, the whole disposition of words was entirely changed. He then commanded six and thirty of the lads to read the several lines softly as they appeared upon the frame; and where they found three or four words together that might make part of a sentence, they dictated to the four remaining boys who were scribes. This work was repeated three or four times, and at every turn the engine was so contrived, that the words shifted into new places, as the square bits of wood moved upside down.” (Jonathan Swift, Gulliver’s Travels, A Voyage to Balnibarbi) What astonishing forecast did Swift show in that narrative that, in spite of the underlying incredulity and irony, still clarifies our surprise when faced to what might seem to some of us just an abandonment of all that architects and designers have cherished: creativeness and inventiveness. Yet, we could argue that such a radical shift in paradigm occurred once when master builders left the construction ground and took seat at drafting boards. The whole body of design and construction knowledge was split into what now seem to us just specialties undertaken by more and more isolated professionals. That shift entailed new forms of representation and prediction which now each and all architects take for granted. Also, Cartesian space representation turned out to be the main instrument for professional practice, even if one can argue that it is not more than the unfolding of stone carving techniques that master builders and guilds were so fond of. Enter computing and all its unfolding, i.e. DNA coding, fractal geometry, generative computing, nonlinear dynamics, pattern generation and cellular automata, as a whole new chapter in science, and compare that to conical perspective, descriptive and analytical geometry and calculus, and an image begins to form, delineating a separation between architect and digital designer. In previous works, we have tried approaching the issues regarding architects education in a more consensual way. But it seems now that the whole curricular corpus might be changed as well. The very foundations upon which we prepare future professionals shall change, not only in College, but in High School as well. In this paper, we delve further into the disconnect between current curricula and digital design practices and suggest new disciplinary grounds for a new architectural education.
keywords Educational paradigm; Design teaching; Design methods;
series SIGRADI
email
last changed 2016/03/10 10:02

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2008_077
id sigradi2008_077
authors Briones, Carolina
year 2008
title A collaborative project experience in an architectural framework, working with Open Source applications and physical computing [Diseño de Plataformas Digitales e Interactivas: una experiencia educativa trabajando colaborativamente con aplicaciones de Código Abierto y Computación Física]
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Nowadays, thanks to the telecommunication revolution and therefore the massive spread of Internet, we have seen the come up of international architectural offices with branches located in different continent, working in a collaborative fashion, surpassing physical and time frontiers. At the same time, the multidisciplinary work between designers, architects, engineers, programmers and even biologist, between others, have been taking place in the new network society. All transformations also supported by the arising of FOSS (Free Open Source Software) and the virtual communities behind them, which allow the creation of non-traditional or specific software, the association between disciplines, and also, the formation of meeting scenarios for a mixture of individuals coming up with multiple motivation to coexist in collaborative environment. Furthermore, it is possible to argue that Open Source applications are also the reflection of a social movement, based on the open creation and exchange of information and knowledge. Do the appeared of FOSS compel us to re-think our working and teaching methods? Do they allow new modes of organizing and collaborating inside our architectural practices?. This paper would like to address these questions, by presenting the results of the “Experience Design” course, which by implementing teaching methods based on Open Source principles and cutting-edge tools, seeks to approach students to these new “way of do”, knowledge and methodologies, and overall, focus them on the science behind the computer. This paper describes the “Experience Design” course, in which architectural graduate students of Universidad Diego Portales (Chile), put for first time their hands on the creation of interactive interfaces. By acquiring basic knowledge of programming and physical computing, students built in a collaborative way a responsive physical installation. The course use as applications “Processing” and “Arduino”. The first one is an Open Source programming language and environment for users who want to program images, animation, and interactions. It has a visual context and serve as a software sketchbook and professional production tool. Processing is a project initiated by Ben Fry and Casey Reas, at the MIT Media Lab (www.processing.org). The second is an Open Source electronics prototyping platform based on flexible, easy-to-use hardware and software. Arduino has a microcontroller (programmed with Processing language) which can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators (www.arduino.cc). Both environments shared a growing community of people working in related projects and extending useful assistance for beginners. In this paper it is presented the current state of the pilot course and some of the initials results collected during the process. Students and teacher’s debates and evaluations of the experience have been exposed. Together with a critical evaluation in relation to the accomplishment of the effort of place together different disciplines in one collaborative project akin, architecture, design, programming and electronic. Finally, futures modifications of the course are discussed, together with consideration to take in account at the moment of bring Open Source and programming culture into the student curriculum.
keywords Physical computing, teaching framework, Open Source, Interactive Installation
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2008_15_session2a_125
id caadria2008_15_session2a_125
authors Mahalingam, Ganapathy
year 2008
title A Case For Architectural Computing: Computing Using Architectural Constructs
doi https://doi.org/10.52842/conf.caadria.2008.125
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 125-131
summary This paper is about the potential of architectural computing. Architectural computing is defined as computing that is done with computational structures that are based on architectural forms. An analysis of works of architecture reveals the embedded forms in the works of architecture. A uniform, connections-based representation of these architectural forms allows us to derive computational structures from them. These computational structures form the basis of architectural computing. In this paper a case is made for architectural computing, ideas are provided for how it could be done, and the benefits of architectural computing are briefly explored.
keywords Architectural computing: architectural programming language; intentional programming; connections-based paradigm
series CAADRIA
email
last changed 2022/06/07 07:59

_id cdc2008_057
id cdc2008_057
authors Onur, Gun and Jonas Coersmeier
year 2008
title Progressions in Defining the Digital Ground for Component Making
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 57-64
summary Terms digital and computation, once accepted as emergent understandings in design, became commonly known and used in recent years. Transformation of techniques from analog to digital created a shift in the understandings as well as products of design. Digital design exploration enabled the designers’ exposure to variety and richness. Increasing number of digital tools became easily-accessible. Thus design thinking in both practice and academia was transformed. Computation, via increasing power and speed of processing, offers mass information execution. Once this power was utilized to inform the discrete pieces of design, “component making” quickly became one of the trends in architectural design. Idea of components transformed the enclosing forms of architecture into subdivision surfaces which act as fields for components to aggregate on. While there has been a great interest in creating variety via manipulation of components as individual members, the characteristics of the surfaces became overlooked via common use of parametric (UV) subdivision. This paper, with a critical look at the current component field generation techniques, focuses on alternative methods of transforming a surface into a digital ground for component aggregation. Series of studies address and deal with various pitfalls of component design and application on software-dictated UV subdivision surfaces. Studies aim to release the component design logic from being software-specific by creation and use of customized digital tools and scripts.
email
last changed 2009/01/07 08:05

_id cdc2008_393
id cdc2008_393
authors Oxman, Neri
year 2008
title Oublier Domino: On the Evolution of Architectural Theory from Spatial to Performance-based Programming
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 393-402
summary The conception of the architect as form-giver has since historical times dominated the field of architecture. It is precisely this image which has devalued material practice in the distinction between form and matter consistently inherent in architectural discourse. Recent technological developments in the field of design computation, coupled with environmental concerns and philosophical debates have contributed to the shift in focus from form, as the exclusive object of design practice to matter and materials as an alternative approach to the conception of form. Such a shift calls for a reorientation of existing protocols for design generation. Design based upon performance appears to justify and make sensible computational design processes that integrate material properties with structural and environmental constraints. These processes, as demonstrated here, contribute to the elimination of traditional architectural typologies replaced with spatial organization driven by need and comfort. This paper proposes a new approach in design where processes of formgeneration supporting sustainable design solutions are directly informed by structural and environmental constraints. Computational models are developed and implemented that incorporate data-driven form generation. Fabrication tools and technologies are customized to include material properties and behavior. The projects illustrated in this paper are currently on display at the Museum of Modern Art.
email
last changed 2009/01/07 08:05

_id cdc2008_157
id cdc2008_157
authors Rocker, Ingeborg
year 2008
title Versioning: Architecture as series?
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 157-170
summary This paper investigates the role of versioning in contemporary theory and the practice of design. The introduction of computation done by computers allowed for complex mathematical calculations and their visualization, which were for long time simply too complex. Today, differential calculus – underlying most interactive 3D modeling software – has significantly informed the production and conceptualization of architecture. The upshot of this transformation is that we are now witnessing a shift from an architecture of modularity towards an architecture of seriality, design versions. The core idea of versioning exceeds simple variation between different parameterized design iterations, versioning rather also operates at the micro-scale, within the structure and aesthetic of digital design itself.
email
last changed 2009/01/07 08:05

_id ecaade2008_190
id ecaade2008_190
authors Russell, Peter; Elger, Dietrich
year 2008
title The Meaning of BIM
doi https://doi.org/10.52842/conf.ecaade.2008.531
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 531-536
summary The paper is a position paper, not a report about a research project. It concerns the paradigm-shift that is taking place in the CAAD software and its implications for the business of architecture and more importantly, for the education of future members of the profession. Twenty years ago the use of CAAD software as a replacement for hand drafting was starting. Since then the transformation is complete: hardly a final project in the universities is drawn by hand. Currently, we are witnessing a second paradigm shift and its name is BIM. The meaning of BIM is rooted in two significant differences to current CAAD software and this will have implications for teaching and practicing architecture. The first difference is the way the software structures information in the CAAD file. The standard way to save CAAD information was to organise simple geometric objects according to membership in groups and to sort them according to a layer-metaphor, which primarily controlled the visibility of the geometric elements. Three-dimensional modelling is/was nothing more than the same structure with a more complex geometry. BIM software changes this structure by storing classes of geometries and then to store the specific values of individual geometries according to factors that can be determined by external or internal logical factors. The implication for architects is that we have the chance to be the people in control of the building information model, so long as we invest the time and energy to fully understand what is happening to the building information during the planning process. If we ignore this, the real danger exists that the last control of the building’s final configuration will be usurped. As educators we are currently teaching students that will be leaving the schools in 2012 and beyond. By then, the paradigm-shift will be in full motion and so it behoves us to consider which skill sets we want the next generation of architects to possess. This means not just teaching students about how to use particular BIM software or how to program a certain parametric/genetic algorithm in a form-finding process. We need to teach our students to take the leadership in building information management and that means understanding and controlling how the building information flows, how the methodologies that are used by the consulting engineers affect our building models, and knowing what kind of logical inconsistencies (internal or external) can threaten the design intention.
keywords Building Information Modelling, Digital Curriculum, Architectural Pedagogy
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2011_058
id ecaade2011_058
authors Schindler, Christoph; Espinosa, Margarita Salmerón
year 2011
title ZipShape Mouldless Bending II: A Shift from Geometry to Experience
doi https://doi.org/10.52842/conf.ecaade.2011.477
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.477-484
summary “ZipShape is a universal method to fabricate single curved panels from any plain material without moulds” was the first statement of a paper presented at the Antwerp eCAADe conference in September 2008 (Schindler, 2008). In contrast, the paper at hand introduces ZipShape as a highly specific composite combining different materials and their characteristics. Between those two texts, a paradigm shift took place – from abstract geometrical concept to experiencing the inseparable relation of form and material behaviour. This second step of ZipShape-research was initiated by Swiss design office schindlersalmerón through several workshops with Fachschule für Holztechnik Hamburg, CITA at Royal Academy of the Fine Arts Copenhagen, Bern University of Applied Sciences BFH–AHB Biel and The Detmold School of Architecture and Interior Design.
wos WOS:000335665500055
keywords Mouldless Bending; Wood; Parametric Modelling; Digital Fabrication; Unrolling
series eCAADe
email
last changed 2022/05/01 23:21

_id 5d77
id 5d77
authors Adriane Borda; Neusa Félix; Janice de Freitas Pires; Noélia de Moraes Aguirre.
year 2008
title MODELAGEM GEOMÉTRICA NOS ESTÁGIOS INICIAIS DE APRENDIZAGEM DA PRÁTICA PROJETUAL EM ARQUITETURA. GEOMETRIC MODELING IN THE EARLY STAGES OF LEARNING PRACTICE ARCHITECTURAL DESIGN.
source 12th Iberoamerican Congress of Digital Graphics, SIGRADI, 2008, Havana. SIGRADI, Proceedings of the 12th Iberoamerican Congress of Digital Graphics.. Havana : Ministerio de Educacion Superior, 2008. p. 434-438.
summary This work invests on delimitation of a Geometric Modeling study program directed to students at the initial stages of Architecture. It is considered that the studies promote a qualified control of the form based on recognition of parameters which define it, moreover it also allows the enlargement of the students geometric vocabulary, important to the architectural design activities. In this way, the program advances on the appropriation of new concepts which surround the investigations on architectural design processes, such as the concept of shape grammar. Observing analysis and architectural composition practices based on such concept, contents of geometric modeling which are already being used in the context of post-graduation are identified to be transposed to the graduation context, along with the initial teaching practices of architectural design. The results refer to making the didactic material available, these materials have the objective of building references for the development of design practice which explore the reflection about the processes of creation and composition of architectural form in their geometric aspects.
keywords Architecture, Geometric Modeling, Shape grammar, Teaching/Learning
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:47

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
doi https://doi.org/10.52842/conf.acadia.2008.066
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id caadria2008_27_session3b_221
id caadria2008_27_session3b_221
authors Al-Haddad, Tristan
year 2008
title Parametric modulations in Masonry
doi https://doi.org/10.52842/conf.caadria.2008.221
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 221-228
summary The focus of the research presented in this paper asks how a designer can create a flexible system of physical making which can accommodate multiple programmatic functions within a smooth whole, rather than creating an a priori singular formal object. This adaptable system of construction works through the development of an intelligent CAD model that can be mapped to a flexible manufacturing mechanism, i.e. a reconfigurable mold. This system of manufacturing can be used to cast totally unique solid modules without creating a unique mold for each part by manipulating the topological structure of the system. This approach takes the notion of mass-customization beyond the expensive and unsustainable one-offs that the design world has seen recently, and into a new paradigm of a sustainable, economically viable world of mass-customizable form and space.
keywords Parametrics, Variability, Reconfigurability, UHPC, Topology, Molding, Casting
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2008_084
id ecaade2008_084
authors Alaçam Aslan, Sema; Çagdas, Gülen
year 2008
title An Interface Proposal for Collaborative Architectural Design Process
doi https://doi.org/10.52842/conf.ecaade.2008.319
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 319-324
summary The aim of this paper is to explore how new technological opportunities affect approaches of designers during collaborative architectural design process. Which factors affect the communication and the quality of interaction? The study is based on two phases: the data input by the designer via devices to the computer environment and the transformation of data into design product in the software by scripting addition. Input devices that are used are 3D mouse, graphic tablet as a tangible interface and implementation of second mouse besides a standard mouse and keyboard. The potential usage of these interfaces in collaborative architectural design process is discussed and proposals are developed in 3ds max scripting environment.
keywords Collaborative design, human-computer interaction, user participation in design
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id acadia08_448
id acadia08_448
authors Alfaris, Anas; Riccardo Merello
year 2008
title The Generative Multi-Performance Design System
doi https://doi.org/10.52842/conf.acadia.2008.448
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 448-457
summary This paper proposes a framework for an integrated computational design system. This design system builds on the strengths inherent in both generative synthesis models and multi-performance analysis and optimization. Four main design mechanisms and their mathematical models are discussed and their integration proposed. The process of building the design system begins by a top-down decomposition of a design concept. The different disciplines involved are decomposed into modules that simulate the respective design mechanisms. Subsequently through a bottom-up approach, the design modules are connected into a data flow network that includes clusters and subsystems. This network forms the Generative Multi-Performance Design System. This integrated system acts as a holistic structured functional unit that searches the design space for satisfactory solutions. The proposed design system is domain independent. Its potential will be demonstrated through a pilot project in which a multi-performance space planning problem is considered. The results are then discussed and analyzed.
keywords Analysis; Behavior; Generative; Optimization; Performance
series ACADIA
type normal paper
last changed 2022/06/07 07:54

_id sigradi2008_080
id sigradi2008_080
authors Andrés, Roberto
year 2008
title Hybrid Art > Synthesized Architecture
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper investigates possible intersections between some contemporary artistic modalities and architectural practice. At first, it describes and discusses different uses of art in architectural history. Through the analyzes of Le Corbusier’s artistic and architectural practices, it observes the limits of looking at art as only ‘inspiration’ for architectural form and points to the necessity of surpassing this formal approach. More than bringing pictorial ‘inspiration’, art, as a experimental field, can change our architectural procedures and approaches - a much richer and powerful addition to the development of architecture. It discusses then, the confluence of architecture, information and communication technologies. Very commonly present in our contemporary life, not only on the making of architecture – computer drawings and modeling of extravagant buildings – nor in ‘automated rooms’ of the millionaire’s houses. Televisions, telephones and computers leave the walls of our houses “with as many holes as a Swiss cheese”, as Flusser has pointed. The architecture has historically manipulated the way people interact, but this interaction now has been greatly changed by new technologies. Since is inevitable to think the contemporary world without them, it is extreme urgent that architects start dealing with this whole universe in a creative way. Important changes in architecture occur after professionals start to research and experiment with different artistic medias, not limiting their visions to painting and sculpture. The main hypothesis of this paper is that the experiments with new media art can bring the field of architecture closer to information and communication technologies. This confluence can only take form when architects rise questions about technology based interaction and automation during their creative process, embodying these concepts into the architecture repertoire. An educational experience was conducted in 2007 at UFMG Architecture School, in Brazil, with the intention of this activity was to allow students to research creatively with both information technology and architecture. The students’ goal was to create site-specific interventions on the school building, using physical and digital devices. Finally, the paper contextualizes this experience with the discussion above exposed. Concluding with an exposition of the potentialities of some contemporary art modalities (specially the hybrid ones) in qualifying architectural practices.
keywords Architecture; Information and Communication Technologies; Digital Art; Site Specific Art; Architectural Learning.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ddss2008-25
id ddss2008-25
authors Antoni, Jean-Philippe; P. Frankhauser, C. Tannier, S. Youssoufi
year 2008
title Simulating and assessing prospective scenariosA comparative approach in urban planning
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary The first part of the paper is centred on the phenomena of urban growth, in order to set the rules for a sustainable scenario of urban development. Then we enter the core of the paper that is the comparison of models. For each of the three compared models, we describe its main theoretical characteristics, the chosen parameters, and the obtained results. In section 6, heterogeneity of the produced results is discussed, and we highlight the points of interest and the lacks of the three models. Here we show that results we obtained feed debates about urban growth management. Finally, concluding remarks at the end of the paper address the general topic of the evaluation of the quality of simulation results.
keywords Urban sprawl, sustainable development, fractals, cellular automata, spatial interaction models
series DDSS
last changed 2008/09/01 17:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_183913 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002