CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 489

_id ecaade2015_265
id ecaade2015_265
authors Hosey, Shannon; Beorkrem, Christopher, Damiano, Ashley, Lopez, Rafael and McCall, Marlena
year 2015
title Digital Design for Disassembly
doi https://doi.org/10.52842/conf.ecaade.2015.2.371
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 371-382
summary The construction and building sector is now widely known to be one of the biggest energy consumers, carbon emitters, and creators of waste. Some architectural agendas for sustainability focus on energy efficiency of buildings that minimize their energy intake during their lifetime - through the use of more efficient mechanical systems or more insulative wall systems. One issue with these sustainability models is that they often ignore the hierarchy of energy within architectural design. The focus on the efficiency is but one aspect or system of the building assembly, when compared to the effectiveness of the whole, which often leads to ad-hoc ecology and results in the all too familiar “law of unintended consequences” (Merton, 1936). As soon as adhesive is used to connect two materials, a piece of trash is created. If designers treat material as energy, and want to use energy responsibly, they can prolong the lifetime of building material by designing for disassembly. By changing the nature of the physical relationship between materials, buildings can be reconfigured and repurposed all the while keeping materials out of a landfill. The use of smart joinery to create building assemblies which can be disassembled, has a milieu of new possibilities created through the use of digital manufacturing equipment. These tools afford designers and manufacturers the ability to create individual joints of a variety of types, which perform as well or better than conventional systems. The concept of design for disassembly is a recognizable goal of industrial design and manufacturing, but for Architecture it remains a novel approach. A classic example is Kieran Timberlake's Loblolly House, which employed material assemblies “that are detailed for on-site assembly as well as future disassembly and redeployment” (Flat, Inc, 2008). The use of nearly ubiquitous digital manufacturing tools helps designers create highly functional, precise and effective methods of connection which afford a building to be taken apart and reused or reassembled into alternative configurations or for alternative uses. This paper will survey alternative energy strategies made available through joinery using digital manufacturing and design methods, and will evaluate these strategies in their ability to create diassemblable materials which therefore use less energy - or minimize the entropy of energy over the life-cycle of the material.
wos WOS:000372316000043
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4075520a-6fe7-11e5-bcc8-f7d564ea25ed
last changed 2022/06/07 07:50

_id acadia08_278
id acadia08_278
authors Paz Gutierrez, Maria
year 2008
title Material Bio-Intelligibility
doi https://doi.org/10.52842/conf.acadia.2008.278
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 278-285
summary Through the formation of bio-chemical information networks natural materials possess efficient processes of self-organization, adaptability, regeneration and decomposition. This performative excellence has lead science to draw behavioral models from nature implementing biomimmicry (Benyus 1998) in the pursuit of material systems optimization. Design disciplines influenced by this course are integrating living organisms as models of efficiency through bionic systems ever more into their discourse. Architecture, influenced by this tendency, is becoming progressively more aware of the vast benefits that biomimetics can yield particularly in the development of ecologically sensitive systems. Yet, the emerging incorporation of bionics into architecture is differing largely to that within the sciences by centering almost exclusively in form (geometrical pattern) generation. This paper analyzes a rising material design research methodology implementing biomimetics: matter-form parametrics based on bio-physical properties’ data. Specific study of the incorporation of broad-scalar scientific imaging into the formulation of explorative parametric grammar for the development of material systems is analyzed through a bio-synthetic polymer based wall system (SugarWall, Gensler+Gutierrez 2006b). The incorporation of broad scalar imaging and material interdependencies is propelling the emergence of new programming tactics that will affect bio-material systems architectural research.
keywords Behavior; Biomimetics; Material; System; Visualization
series ACADIA
last changed 2022/06/07 07:59

_id acadia08_376
id acadia08_376
authors Silver, Mike
year 2008
title The Most Important Airplane In The History Of Architecture
doi https://doi.org/10.52842/conf.acadia.2008.376
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 376-381
summary Composite structures consist of high strength carbon threads held together in a matrix of epoxy resin or thermoplastics. Surfaces made from these materials are typically 10 times lighter and 1.5 times stronger than aluminum. Both simple and highly contoured shapes possessing extreme strength can be produced using a computer controlled fiber placement machine (FPM). These incredibly thin, corrosion resistant membranes require little or no supplemental support to manage loads and enclose space. The computer’s ability to determine the precise location of each fiber strand in a fiber placed part also facilitates unprecedented control of its aesthetic and functional properties. Fiber placement technology integrates building components that would normally be separated into clearly distinct systems. Here ornament, structure and cladding are collapsed into one material process. This paper explores the architectural potential of a technology normally reserved for aerospace applications through research conducted in close collaboration with fiber placement engineers at Automated Dynamics in Schenectady, New York (ADC).
keywords Composite; Digital Fabrication; Fiber; Skin; Structure
series ACADIA
last changed 2022/06/07 07:56

_id 5d77
id 5d77
authors Adriane Borda; Neusa Félix; Janice de Freitas Pires; Noélia de Moraes Aguirre.
year 2008
title MODELAGEM GEOMÉTRICA NOS ESTÁGIOS INICIAIS DE APRENDIZAGEM DA PRÁTICA PROJETUAL EM ARQUITETURA. GEOMETRIC MODELING IN THE EARLY STAGES OF LEARNING PRACTICE ARCHITECTURAL DESIGN.
source 12th Iberoamerican Congress of Digital Graphics, SIGRADI, 2008, Havana. SIGRADI, Proceedings of the 12th Iberoamerican Congress of Digital Graphics.. Havana : Ministerio de Educacion Superior, 2008. p. 434-438.
summary This work invests on delimitation of a Geometric Modeling study program directed to students at the initial stages of Architecture. It is considered that the studies promote a qualified control of the form based on recognition of parameters which define it, moreover it also allows the enlargement of the students geometric vocabulary, important to the architectural design activities. In this way, the program advances on the appropriation of new concepts which surround the investigations on architectural design processes, such as the concept of shape grammar. Observing analysis and architectural composition practices based on such concept, contents of geometric modeling which are already being used in the context of post-graduation are identified to be transposed to the graduation context, along with the initial teaching practices of architectural design. The results refer to making the didactic material available, these materials have the objective of building references for the development of design practice which explore the reflection about the processes of creation and composition of architectural form in their geometric aspects.
keywords Architecture, Geometric Modeling, Shape grammar, Teaching/Learning
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:47

_id acadia08_066
id acadia08_066
authors Ahlquist, Sean; Moritz Fleischmann
year 2008
title Material & Space: Synthesis Strategies based on Evolutionary Developmental Biology
doi https://doi.org/10.52842/conf.acadia.2008.066
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 66-71
summary A material system can be defined as a set of self-organized materials, defining a certain spatial arrangement. In architecture, this material arrangement acts as a threshold for space, though space often only appears as a by-product of the material organization. Treating space as a resulting, therefore secondary, independent product minimizes the capacity to generate architecture that is astutely aware of concerns of functionality, environment and energy. An effective arrangement of material can only be determined in relation to the spaces that it defines. When proposing a more critical approach, a material system can be seen as an intimate inter-connection and reciprocal exchange between the material construct and the spatial conditions. It is necessary to re-define material system as a system that coevolves spatial and material configurations through analysis of the resultant whole, in a process of integration and evaluation. ¶ With this understanding of material system comes an expansion in the number of criteria that are simultaneously engaged in the evolution of the design. The material characteristics, as well as the spatial components and forces (external and internal), are pressures onto the arrangement of material and space. ¶ This brings a high degree of complexity to the process. Biological systems are built on methods that resolve complex interactions through sets of simple yet extensible rules. Evolutionary Developmental Biology explains how growth is an interconnected process of external forces registering fitness into a fixed catalogue of morphological genetic tools. Translating the specific framework for biological growth into computational processes, allows the pursuit of an architecture that is fully informed by the interaction of space and material.
keywords Biology; Computation; Material; Parametric; System
series ACADIA
last changed 2022/06/07 07:54

_id acadia08_118
id acadia08_118
authors Cabrinha, Mark
year 2008
title Gridshell Tectonics: Material Values Digital Parameters
doi https://doi.org/10.52842/conf.acadia.2008.118
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 118-125
summary This paper begins with a simple proposition: rather than mimicking the geometric structures found in nature, perhaps the most effective modes of sustainable fabrication can be found through understanding the nature of materials themselves. Material becomes a design parameter through the constraints of fabrication tools, limitations of material size, and most importantly the productive capacity of material resistance—a given material’s capacity and tendencies to take shape, rather than cutting shape out of material. ¶ Gridshell structures provide an intriguing case study to pursue this proposition. Not only is there clear precedent in the form-finding experiments of Frei Otto and the Institute for Lightweight Structures, but also the very NURBS based tools of current design practices developed from the ability of wood to bend. Taking the bent wood spline quite literally, gridshells provide a means that is at once formally expressive, structurally optimized, materially efficient, and quite simply a delight to experience. The larger motivation of this work anticipates a parametric system linking the intrinsic material values of the gridshell tectonic with extrinsic criteria such as programmatic needs and environmental response. ¶ Through an applied case study of gridshells, the play between form and material is tested out through the author’s own experimentation with gridshells and the pedagogical results of two gridshell studios. The goal of this research is to establish a give-and-take relationship between top-down formal emphasis and a bottom-up material influence.
keywords Digital Fabrication; Form-Finding; Material; Pedagogy; Structure
series ACADIA
last changed 2022/06/07 07:54

_id ecaade2008_119
id ecaade2008_119
authors Celento, David; Harrow, Del
year 2008
title CeramiSKIN
doi https://doi.org/10.52842/conf.ecaade.2008.709
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 709-716
summary ceramiSKIN is the result of an inter-disciplinary investigation between an architect and a ceramics artist. We are exploring natural orders as generators for aperiodic (non-repeating) tiling systems in architectural ceramic cladding systems. Of particular interest are the possibilities offered by digital imaging of organic materials [at various scales from 1:1 to 1:1 nanometer] as a means of form generation. After scanning, shapes are computationally deformed to create a range of biophilic effects promulgated through unique large scale ceramic cladding systems constructed using digital fabrication techniques.
keywords Ceramic cladding systems: biophilia in architecture, digital design, digital fabrication, mass-customization
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia08_300
id acadia08_300
authors Doumpioti, Christina
year 2008
title Adaptive Growth of Fibre Composite Structures
doi https://doi.org/10.52842/conf.acadia.2008.300
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 300-307
summary The core idea of this research is the incorporation of the morphogenetic principles found in natural systems in the generation of fibre-composite structures by exploiting, at the maximum, the intrinsic performative capacities of the material system in use. The intention is the integration of form, material, structure and program into a multi-performative system that will satisfy simultaneously several, even conflicting objectives, in order to achieve an optimal compromise. This process involves the combination and implementation of concepts and methods based on precedent studies in the field of biomimetics, as well as form-finding digital and physical experiments that inform a coherent design methodology, leading to a structural system able to be fabricated using cutting-edge technology.
keywords Adaptation; Composite; Fiber; Integrative; Morphogenesis
series ACADIA
last changed 2022/06/07 07:55

_id acadia08_072
id acadia08_072
authors Frumar, Jerome
year 2008
title An Energy Centric Approach to Architecture: Abstracting the material to co-rationalize design and performance
doi https://doi.org/10.52842/conf.acadia.2008.072
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 72-81
summary This paper begins by exploring matter as an aggregated system of energy transactions and modulations. With this in mind, it examines the notion of energy driven form finding as a design methodology that can simultaneously negotiate physical, environmental and fabrication considerations. The digital workspace enables this notion of form finding to re-establish itself in the world of architecture through a range of analytic tools that algorithmically encode real world physics. Simulating the spatial and energetic characteristics of reality enables virtual “form generation models that recognize the laws of physics and are able to create ‘minimum’ surfaces for compression, bending [and] tension” (Cook 2004). The language of energy, common in engineering and materials science, enables a renewed trans-disciplinary dialogue that addresses significant historic disjunctions such as the professional divide between architects and engineers. Design becomes a science of exploring abstracted energy states to discover a suitable resonance with which to tune the built environment. ¶ A case study of one particular method of energy driven form finding is presented. Bi-directional Evolutionary Structural Optimization (BESO) is a generative engineering technique developed at RMIT University. It appropriates natural growth strategies to determine optimum forms that respond to structural criteria by reorganizing their topology. This dynamic topology response enables structural optimization to become an integrated component of design exploration. A sequence of investigations illustrates the flexibility and trans-disciplinary benefits of this approach. Using BESO as a tool for design rather than purely for structural optimization fuses the creative approach of the architect with the pragmatic approach of the engineer, enabling outcomes that neither profession could develop in isolation. The BESO case study alludes to future design processes that will facilitate a coherent unfolding of design logic comparable to morphogenesis.
keywords Energy; Form-Finding; Morphogenesis; Optimization; Structure
series ACADIA
last changed 2022/06/07 07:50

_id acadia08_182
id acadia08_182
authors Gibson, Michael; Kevin R. Klinger; Joshua Vermillion
year 2008
title Constructing Information: Towards a Feedback Ecology in Digital Design and Fabrication
doi https://doi.org/10.52842/conf.acadia.2008.182
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 182-191
summary As strategies evolve using digital means to navigate design in architecture, critical process-based approaches are essential to the discourse. The often complex integration of design, analysis, and fabrication through digital technologies is wholly reliant upon a process-basis necessitating the use of a design feedback loop, which reinforces critical decision-making and challenges the notions of how we produce, visualize, and analyze information in the service of production and assembly. Central to this process-based approach is the effective and innovative integration of information and the interrogation of material based explorations in the making of architecture. This fabrication ‘ecology’ forces designers to engage complexity and accept the unpredictability of emergent systems. It also exposes the process of working to critique and refine feedback loops in light of complex tools, methods, materials, site, and performance considerations. In total, strategies for engaging this ‘ecology’ are essential to accentuate our present understanding of environmental design and theory in relation to digital processes for design and fabrication. ¶ This paper recounts a design/fabrication seminar entitled “Constructing Information” in which architecture students examined an environmental design problem by way of the design feedback loop, where their efforts in applying digital design and fabrication methods were driven explicitly by material and site realities and where their work was executed, installed, and critically explored in situ. These projections raise important questions about how information, complexity, and context overlay and merge, and underscore the critical potential of visual, spatial, and material effects as part of a fabrication-oriented design process.
keywords Digital Fabrication; Ecology; Environment; Feedback; Performance
series ACADIA
last changed 2022/06/07 07:51

_id sigradi2008_089
id sigradi2008_089
authors Godoi,Giovana; Gabriela Celani
year 2008
title A study about facades from historical brazilian town using shape grammar
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary Shape grammars have been used in architecture for analysis and synthesis - in the first case, mainly for the characterization of styles and in the later for the generation of novel compositions. The present research proposes the use of shape grammars for establishing guidelines for the requalification of historical areas that have lost their original characteristics due to improper renovations. The use of shape grammars proposed here starts with the definition of a set of rules for characterizing the original style of an area. Based on these rules, the main characteristics of the area are confirmed, such as siting, proportions between walls and openings in the façades, overall dimensions constraints, and so on. Next, the rules of the grammar are transformed, to allow the use of contemporary building materials, as well as the incorporation of contemporary living styles in the new design. Rules must take into account two cases: original buildings that have been inadequately transformed, and buildings that have been completely torn down and will replace been completely replaced by new constructions. Both cases need to be harmonious with the remaining original buildings, however without simply copying the existing style. In both cases, rules have been used to establish the guidelines for the renovations, which resulted in modern urban environments that resemble the original historical sites in terms of spatial relations and proportions. They also create an appropriate environment for the observations of the preserved original buildings, which would otherwise look like aliens in a completely transformed neighborhood. The latter case is very common in most Brazilian cities, especially in the case of São Paulo, where houses from the late 1800´s and early 1900´s are flanked by high rise apartment buildings. In order to develop and test the proposed method, a study will be carried out in a small Brazilian town called Monte Alegre do Sul. The town was chosen because its original urban morphology, developed in the XIXth century, is still relatively well preserved, although part of the original façades have been transformed. The objective of the research is to develop a shape grammar to set guidelines for the re-adaptation of the already renovated façades and reconstruction of other ones in Monte Alegre do Sul.
keywords Shape grammar, generative design systems
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia08_286
id acadia08_286
authors Khan, Omar
year 2008
title Reconfigurable Molds as Architecture Machines
doi https://doi.org/10.52842/conf.acadia.2008.286
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 286-291
summary In The Architecture Machine (1970), Nicholas Negroponte postulates the development of design machines wherein the “design process, considered as evolutionary, can be presented to a machine, also considered as evolutionary, and a mutual training, resilience, and growth can be developed.” The book, dedicated to “the first machine that can appreciate the ges­ture,” argues for developing machines with human like quali­ties. This paper aims to develop an alternative trajectory to the “evolutionary” architecture machine, this time not towards anthropomorphism but responsiveness. The aim on one level is the same: to create machines that appreciate the gesture. However our approach is tied to more modest aims and means that bring current thinking on evolutionary processes and the forming of materials together. The reconfigurable mold (RCM) is an architecture machine that produces parts that can be combined to create more complex organizations. The molds are simple analog computers that employ various continuous scales like volume, weight and heat to develop their unique components. Parametric alterations are made possible by affecting these measures in the process of fabrication. An underlying material that is instrumental in the molds is rub­ber, whose variable elasticity provides unique possibilities for indexing the gesture that remains elusive for industrial pro­cesses.
keywords Casting; Digital Fabrication; Generative; Material; Morphogenesis
series ACADIA
last changed 2022/06/07 07:52

_id sigradi2008_175
id sigradi2008_175
authors Knight, Terry; Larry Sass, Kenfield Griffith, Ayodh Vasant Kamath
year 2008
title Visual-Physical Grammars
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary This paper introduces new visual-physical design grammars for the design and manufacture of building assembly systems that provide visually rich, culturally resonant design variations for housing. The building systems are intended to be tailored for particular cultures and communities by incorporating vernacular, decorative design into the assembly design. Two complementary areas of computational design research are brought together in this work: shape grammars and digital fabrication. The visual or graphic aspects of the research are explored through shape grammars. The physical design and manufacturing aspects are explored through advanced digital design and fabrication technologies and, in particular, build on recent work on mono-material assemblies with interlocking components that can be fabricated with CNC machines and assembled easily by hand on-site (Sass, 2007). This paper describes the initial, proof-of-concept stage of this work: the development of an automated, visual-physical grammar for an assembly system based on a vernacular language of Greek meander designs. A shape grammar for the two-dimensional Greek meander language (Knight, 1986) was translated into a three-dimensional assembly system. The components of the system are uniquely designed, concrete “meander bricks” (Figure 1). The components have integrated alignment features so that they can be easily fitted and locked together manually without binding materials. Components interlock horizontally to form courses, and courses interlock vertically in different ways to produce a visual variety of meander walls. The assembly components were prototyped at desktop scale with a layered manufacturing machine to test their appearance after assembly and their potential for design variations (Figure 2). Components were then evaluated as full-scale concrete objects for satisfaction of physical constraints related to concrete forming and component strength. The automated grammar (computer program) for this system generates assembly design variations with complete CAD/CAM data for fabrication of components formed from layered, CNC cut molds. Using the grammar, a full-scale mockup of a corner wall section was constructed to assess the structural, material, and aesthetic feasibility of the system, as well as ease of assembly. The results of this study demonstrate clearly the potentials for embedding visual properties in structural systems. They provide the foundations for further work on assembly systems for complete houses and other small-scale structures, and grammars to generate them. In the long-term, this research will lead to new solutions for economical, easily manufactured housing which is especially critical in developing countries and for post-disaster environments. These new housing solutions will not only provide shelter but will also support important cultural values through the integration of familiar visual design features. The use of inexpensive, portable digital design and fabrication technologies will allow local communities to be active, cooperative participants in the design and construction of their homes. Beyond the specific context of housing, visual-physical grammars have the potential to positively impact design and manufacture of designed artifacts at many scales, and in many domains, particularly for artifacts where visual aesthetics need to be considered jointly with physical or material requirements and design customization or variation is important.
keywords Shape grammar, digital fabrication, building assembly, mass customization, housing
series SIGRADI
email
last changed 2016/03/10 09:54

_id cdc2008_091
id cdc2008_091
authors Neumann, Oliver
year 2008
title Digitally Mediated Regional Building Cultures
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 91-98
summary Designs are complex energy and material systems and products of diverse cultural, economic, and environmental conditions that engage with their extended context. This approach relates architecture to the discourse on complexity. The design research described in this paper introduces an extended definition of ecology that expands the scope of design discourse beyond the environmental performance of materials and types of construction to broader cultural considerations. Parallel to enabling rich formal explorations, digital modeling and fabrication tools provide a basis for engaging with complex ecologies within which design and building exist. Innovative design applications of digital media emphasize interdependencies between new design methods and their particular context in material science, economy, and culture. In British Columbia, influences of fabrication and building technology are evident in the development of a regional cultural identity that is characterized by wood construction. While embracing digital technology as a key to future development and geographic identity, three collaborative digital wood fabrication projects illustrate distinctions between concepts of complexity and responsiveness and their application in design and construction.
email
last changed 2009/01/07 08:05

_id cdc2008_393
id cdc2008_393
authors Oxman, Neri
year 2008
title Oublier Domino: On the Evolution of Architectural Theory from Spatial to Performance-based Programming
source First International Conference on Critical Digital: What Matters(s)? - 18-19 April 2008, Harvard University Graduate School of Design, Cambridge (USA), pp. 393-402
summary The conception of the architect as form-giver has since historical times dominated the field of architecture. It is precisely this image which has devalued material practice in the distinction between form and matter consistently inherent in architectural discourse. Recent technological developments in the field of design computation, coupled with environmental concerns and philosophical debates have contributed to the shift in focus from form, as the exclusive object of design practice to matter and materials as an alternative approach to the conception of form. Such a shift calls for a reorientation of existing protocols for design generation. Design based upon performance appears to justify and make sensible computational design processes that integrate material properties with structural and environmental constraints. These processes, as demonstrated here, contribute to the elimination of traditional architectural typologies replaced with spatial organization driven by need and comfort. This paper proposes a new approach in design where processes of formgeneration supporting sustainable design solutions are directly informed by structural and environmental constraints. Computational models are developed and implemented that incorporate data-driven form generation. Fabrication tools and technologies are customized to include material properties and behavior. The projects illustrated in this paper are currently on display at the Museum of Modern Art.
email
last changed 2009/01/07 08:05

_id sigradi2008_166
id sigradi2008_166
authors Papanikolaou, Dimitris
year 2008
title Digital Fabrication Production System Theory: Towards an Integrated Environment for Design and Production of Assemblies
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary A Digital Fabrication Production System (DFPS) is a concept describing a set of processes, tools, and resources that will be able to produce an artifact according to a design, fast, cheap, and easy, independently of location. A DFPS project is a complex assembly of custom parts that is delivered by a network of fabrication and assembly processes. This network is called the value chain. The workflow concept of a DFPS is the following: begin design process with a custom geometric form; decompose it into constructible parts; send the part files for fabrication to various locations; transport all parts at the construction site at the right time; finally, assemble the final artifact. Conceptually it means that based on a well structured value chain we could build anything we want, at anyplace, at controllable cost and quality. The goals of a DFPS are the following: custom shapes, controllable lead time, controllable quality, controllable cost, easiness of fabrication, and easiness of assembly. Simply stated this means to build any form, anywhere, accurately, cheap, fast, and easy. Unfortunately, the reality with current Digital Fabrication (DF) projects is rather disappointing: They take more time than what was planned, they get more expensive than what was expected, they involve great risk and uncertainty, and finally they are too complex to plan, understand, and manage. Moreover, most of these problems are discovered during production when it is already late for correction. However, there is currently no systematic approach to evaluate difficulty of production of DF projects in Architecture. Most of current risk assessment methods are based on experience gathered from previous similar cases. But it is the premise of mass customization that projects can be radically different. Assembly incompatibilities are currently addressed by building physical mockups. But physical mockups cause a significant loss in both time and cost. All these problems suggest that an introduction of a DFPS for mass customization in architecture needs first an integrated theory of assembly and management control. Evaluating feasibility of a DF project has two main problems: first, how to evaluate assemblability of the design; second, how to evaluate performance of the value chain. Assemblability is a system’s structure problem, while performance is a system’s dynamics problem. Structure of systems has been studied in the field of Systems Engineering by Network Analysis methods such as the Design Structure Matrix (DSM) (Steward 1981), and the liaison graph (Whitney 2004), while dynamics of systems have been studied by System Dynamics (Forrester 1961). Can we define a formal method to evaluate the difficulty of production of an artifact if we know the artifact’s design and the production system’s structure? This paper formulates Attribute Process Methodology (APM); a method for assessing feasibility of a DFPS project that combines Network Analysis to evaluate assemblability of the design with System Dynamics to evaluate performance of the value chain.
keywords Digital Fabrication, Production System, System Dynamics, Network Analysis, Assembly
series SIGRADI
email
last changed 2016/03/10 09:57

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
doi https://doi.org/10.52842/conf.acadia.2011.152
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id caadria2008_51_session5a_417
id caadria2008_51_session5a_417
authors Schimek, Heimo; Milena Stavric, Albert Wiltsche
year 2008
title The Intelligence of ornaments: Exploring ornamental ways of Affordable Non-Standard Building Envelopes
doi https://doi.org/10.52842/conf.caadria.2008.417
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 417-425
summary The purpose of this research is to explore ornamental patterns which can be used to enhance materials characteristics in low-cost building envelopes. We use standard building materials (sheets of cross-laminated timber) and develop a parametric design framework for the assembly. Existing rules of ornamental geometry are applied to a parametric controlled structural model so as to endow the building parts both with stability and aesthetics. The concepts of mass customization and “File to factory” support the digital fabrication of a non-repetitive pattern in façade construction and lead to reduced construction costs and building time.
keywords Ornament, symmetry, parametric design, building shell, affordable non-standard architecture, mass customization
series CAADRIA
email
last changed 2022/06/07 07:56

_id ddss2008-46
id ddss2008-46
authors Sharma, Shrikant B. and Vincent Tabak
year 2008
title Rapid Agent Based Simulation of People Flow forDesign of SpacesAnalysis, Design and Optimisation
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary This paper presents a novel static-dynamic network based people flow simulation model applied to design optimisation of circulation spaces within buildings and urban areas. In the current state of art the majority of existing people flow simulation models are driven by analysis rather than design. This is fine for simpler, evacuation type scenarios where a single or a few analyses runs are sufficient to determine the evacuation time. For more complex scenarios such as crowd circulation with complex multi-directional flow, one is as interested in the sensitivity of various design and stochastic behavioural parameters, so the rapid modelling simulations together with design capability become important. This paper presents a simplified network based people flow model that enables rapid simulations and therefore iterative design optimization of circulation space. The work integrates the techniques of graph-theory based network analysis with an origin-destination matrix model of crowd flow, to provide a rapid, parametric model. The resulting model can be analysed in a static as well as dynamic state. In the static state, the model analyses space based on connectivity of nodes, superimposed with the origin-destination matrix of population to provide valuable information such as footfalls, density maps, as well as quasi-static parameters such as mean flow rates. In the dynamic state, the model allows time-dependent analysis of flow using a detailed agent based simulation that also incorporates dynamic route-choice modelling, agent behaviours and interaction, and stochastic variations. The paper presents the integrated modelling technique and its implementation into simulation software SMART Move.
keywords People Flow, Pedestrian, Agent Based Simulation, Evacuation, Network, Optimisation
series DDSS
last changed 2008/09/01 17:06

_id acadia08_370
id acadia08_370
authors Wallick, Karl
year 2008
title Digital and Manual Joints
doi https://doi.org/10.52842/conf.acadia.2008.370
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 370-375
summary This paper considers the problem of detailing joints between manual and digital construction by tracking the provocations of KieranTimberlake’s SmartWrap research and the evolution of that knowledge into practical architectural instruments that can be deployed into more traditional construction projects. Over the past several years, KieranTimberlake Associates in Philadelphia has undertaken a path of research focusing on problems of contemporary construction systems and practices. One product of this research was a speculative wall system assembled for a museum exhibit. SmartWrap was to be a digitally prefabricated wall system with embedded technology. ¶ While they have yet to wrap a building with SmartWrap, KieranTimberlake have utilized a number of the construction principles and digital tools tested in the SmartWrap exhibit. One of the most important principles, prefabrication, was explored in a fast-track construction project at the Sidwell Friends School. The compressed schedule drove the design of an enclosure system which incorporated performative elements in similar categories to SmartWrap: insulation, an electrical system, view, daylighting, and a rainscreen. Besides being a prefabricated façade system, the rainscreen detailing became a formal system for organizing many other scales of the project including: site systems, thermal systems, daylighting systems, enclosure, and ornament. At a second project, a similar wood rainscreen strategy was used. However, at the Loblolly House the question of prefabrication and digital modeling was tested far more extensively: thermal systems were embedded into prefabricated floor cartridges, entire program elements – a library, kitchen, and bathroom were proposed as prefabricated systems of self-contained volume and infrastructure which were then inserted into the on-site framework. ; In all three projects the joint between manual-imprecise construction and digital-precise prefabrication became the area of richest invention (Figure 1). SmartWrap may not have yielded flexible, plastic architecture; but its conceptual and practical questions have yielded tangible implications for the design/construction processes and the built product in KieranTimberlake’s practice.
keywords Construction; Design; Integrative; Prefabrication; Skin
series ACADIA
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_361309 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002