CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 593

_id caadria2009_165
id caadria2009_165
authors Lopkerd, Prittiporn; Pinto Jinuntuya
year 2009
title Interactive 3D Simulation System in Game Engine Based Collaborative Virtual Environment for Architectural Design Communication
doi https://doi.org/10.52842/conf.caadria.2009.533
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 533-542
summary This paper will present an innovative prototype for architectural design based on the Cryengine2 technology, which can generate virtual environments. The objective is for exploratory study and analysis method of using computer game engine that have several features for architecture design process, relate to real-time collaborative virtual environment could derive from multi-player aspects for designer team, and easily level of representation and basis for perception of owner or general user. In addition, the Cryengine2 have easily using and development for designer who is non programmer, and present realistic virtual worlds featuring user friendly interaction. Finally, this paper attempts to explore and suggests novel tools developed within to implement architectural design communication.
keywords Interactive Communication, Game Engine, CryENGINE, Visualization, Collaborative Virtual Environment
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
doi https://doi.org/10.52842/conf.acadia.2016.140
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id sigradi2009_911
id sigradi2009_911
authors Teixeira, Fábio Gonçalves; Sérgio Leandro dos Santos
year 2009
title VirtusCADE, um Sistema para o Design Virtual de Produtos [VirtusCADE, A system for virtual design of products]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The knowledge of latest technology that allows the development of competitive products in reduced times is crucial to guarantee a sustainable growth of the national industry. This work presents the development of a computational system for the Virtual Design of products, the VirtusCADE, which is a CAD/CAE interactive software (Computer Aided Design/Computer Aided Engineering). The VirtusCADE includes 3D geometric modeling of surfaces and solids and mesh generation. The system uses the parametric modeling of surfaces, including algorithms for determination of intersection between surfaces and for triangular mesh generation in trimmed parametric surfaces. The graphical interface is interactive and allows the direct real time manipulation of objects (lines, surfaces and solids) in 3D using the OpenGL technology. The system prioritizes the usability, implementing several graphic tools that facilitate the manipulation in 3D. The VirtusCADE contemplates the structural simulation through the Finite Element Method. The code architecture is based on oriented object programming, which allows great scaling capability for the implementation of new tools. This project has great applicability in numerical simulation of physical phenomena, such structural analysis of buildings, vehicles parts, with impact in the industries of civil construction, metal-mechanics, aerospatial, naval and automotive.
keywords Virtual Design; Geometric modeling; Finite elements
series SIGRADI
email
last changed 2016/03/10 10:01

_id cf2011_p018
id cf2011_p018
authors Sokmenoglu, Ahu; Cagdas Gulen, Sariyildiz Sevil
year 2011
title A Multi-dimensional Exploration of Urban Attributes by Data Mining
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 333-350.
summary The paper which is proposed here will introduce an ongoing research project aiming to research data mining as a methodology of knowledge discovery in urban feature analysis. To address the increasing multi-dimensional and relational complexity of urban environments requires a multidisciplinary approach to urban analysis. This research is an attempt to establish a link between knowledge discovery methodologies and automated urban feature analysis. Therefore, in the scope of this research we apply data mining methodologies for urban analysis. Data mining is defined as to extract important patterns and trends from raw data (Witten and Frank, 2005). When applied to discover relationships between urban attributes, data mining can constitute a methodology for the analysis of multi-dimensional relational complexity of urban environments (Gil, Montenegro, Beirao and Duarte, 2009) The theoretical motivation of the research is derived by the lack of explanatory urban knowledge which is an issue since 1970’s in the area of urban research. This situation is mostly associated with deductive methods of analysis. The analysis of urban system from the perspective of few interrelated factors, without considering the multi-dimensionality of the system in a deductive fashion was not been explanatory enough. (Jacobs, 1961, Lefebvre, 1970 Harvey, 1973) To address the multi-dimensional and relational complexity of urban environments requires the consideration of diverse spatial, social, economic, cultural, morphological, environmental, political etc. features of urban entities. The main claim is that, in urban analysis, there is a need to advance from traditional one dimensional (Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, Density maps) to the consideration of the simultaneous multi-dimensionality of urban systems. For this purpose, this research proposes a methodology consisting of the application of data mining as a knowledge discovery method into a GIS based conceptual urban database built out of official real data of Beyoglu. Generally, the proposed methodology is a framework for representing and analyzing urban entities represented as objects with properties (attributes). It concerns the formulation of an urban entity’s database based on both available and non-available (constructed from available data) data, and then data mining of spatial and non-spatial attributes of the urban entities. Location or position is the primary reference basis for the data that is describing urban entities. Urban entities are; building floors, buildings, building blocks, streets, geographically defined districts and neighborhoods etc. Urban attributes are district properties of locations (such as land-use, land value, slope, view and so forth) that change from one location to another. Every basic urban entity is unique in terms of its attributes. All the available qualitative and quantitative attributes that is relavant (in the mind of the analyst) and appropriate for encoding, can be coded inside the computer representation of the basic urban entity. Our methodology is applied by using the real and official, the most complex, complete and up-to-dataset of Beyoglu (a historical neighborhood of Istanbul) that is provided by the Istanbul Metropolitan Municipality (IBB). Basically, in our research, data mining in the context of urban data is introduced as a computer based, data-driven, context-specific approach for supporting analysis of urban systems without relying on any existing theories. Data mining in the context of urban data; • Can help in the design process by providing site-specific insight through deeper understanding of urban data. • Can produce results that can assist architects and urban planners at design, policy and strategy levels. • Can constitute a robust scientific base for rule definition in urban simulation applications such as urban growth prediction systems, land-use simulation models etc. In the paper, firstly we will present the framework of our research with an emphasis on its theoretical background. Afterwards we will introduce our methodology in detail and finally we will present some of important results of data mining analysis processed in Rapid Miner open-source software. Specifically, our research define a general framework for knowledge discovery in urban feature analysis and enable the usage of GIS and data mining as complementary applications in urban feature analysis. Acknowledgments I would like to thank to Nuffic, the Netherlands Organization for International Cooperation in Higher Education, for funding of this research. I would like to thank Ceyhun Burak Akgul for his support in Data Mining and to H. Serdar Kaya for his support in GIS.
keywords urban feature analysis, data mining, urban database, urban complexity, GIS
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2009_hussein_albotany
id ascaad2009_hussein_albotany
authors Albotany, Hussein S.
year 2009
title Development of Digital City Models Using 3d GIS
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 409-418
summary “Digital city” is a copy of an actual city in the virtual space. It is expected to play an important role in urban planning, disaster simulation etc. Recent advanced remote sensing technologies, which are capable to quickly provide detailed information of city areas, ease the construction of 3D city models. Urbanization has evinced interest from a wide section of the society including experts, amateurs and novices. With the development and infrastructure initiatives mostly around the urban centers, the impacts of urbanization and sprawl would be on the environment and the natural resources. The research introduces an application of 3D GIS on Manama City.
series ASCAAD
email
last changed 2009/06/30 08:12

_id sigradi2009_775
id sigradi2009_775
authors Alves, Andressa Schneider; José Luis Farinatti Aymone
year 2009
title Modelagem 3D e animação para o desenvolvimento de um modelo virtual interativo em realidade virtual (VRML) na área de moda [3D modeling and animation for the development of an interactive virtual model in virtual reality (VRML) in fashion ]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This article describes the development of a project that combines modeling and animation of three-dimensional objects (virtual model, clothing, environment) in the software 3D Studio Max with VRML (Virtual Reality Modeling Language). The project allows various interactions between the user and the environment developed. The main interaction is the choice of clothing, in which different parts can be proven in the virtual model. The results can be applied to online sales, marketing strategies and 3D virtual simulation.
keywords Modelagem tridimensional; Animação; Realidade Virtual; Moda; Fashion Design
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2009_119
id cf2009_119
authors Boeykens, Stefan; Neuckermans, Herman
year 2009
title Architectural design analysis, historical reconstruction and structured archival using 3D models: Techniques, methodology and long term preservation of digital models
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 119-132
summary With the increased usage of 3D modeling, visualization, simulation and Building Information Modeling, architects produce 3D models, both for new designs and for historic reconstructions. However, these models are seldom shared to transfer structured information about the project. Even if they are exchanged, they are often not usable outside of their original design application. Additionally, digital archives with architectural content can not easily provide structured information about these 3D models, limiting their usefulness. This article discusses an approach to provide better structured models, using a combination of a sound methodology, the application of open file formats and additional metadata creation.
keywords CAAD, design analysis, reconstruction, archival, preservation
series CAAD Futures
email
last changed 2009/06/08 20:53

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2009_025
id ecaade2009_025
authors Dounas, Theodoros; Sigalas, Alexandros
year 2009
title Blender, an Open Source Design Tool: Advances and Integration in the Architectural Production Pipeline
doi https://doi.org/10.52842/conf.ecaade.2009.737
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 737-744
summary We examine an open source 3d suite of tools called blender, as a tool for architectural design. The unique features of blender are examined in terms of ease of use and integrated nature since blender incorporates a simulation engine and a game engine that can be used creatively in the design process. The unique data structure of Blender is examined with the features and work flow that this structure brings in the design process. Also a simple comparison is made between Blender and 3ds max in terms of features and workflow as visualization tools together with an assessment of a two year seminar that took place in the Department of Architecture, in Volos Greece.
wos WOS:000334282200089
keywords Integrated design, open source cad
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2009_585
id cf2009_585
authors E. Swarts, Matthew; A. Sheward, Hugo
year 2009
title Using multi-level virtual environments as a medium for conducting design review through a shared IFC dataset
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 585- 597
summary For a long time the Architecture-Engineering-Construction (AEC) community has had difficulty in communicating the content of their work, not only the various specialties involved, but also to their clients. Studies (Doorst and Cross 2001; Bakhtin 1994) suggest the importance of multi-role collaborative environments in supporting design processes. We are developing a Multi Level Design Review Tool for the AEC industry which allows multiple actors to congregate and interact as agents around a central Building Model. It merges real-time virtual 3D visualization technologies with Industry Foundation Classes (IFC) to support both high levels of semantic content and seamless interoperability.
keywords Design review, virtual environment, interoperability
series CAAD Futures
email
last changed 2009/06/08 20:53

_id ijac20097104
id ijac20097104
authors Forte, Maurizio; Pietroni, Eva
year 2009
title 3D Collaborative Environments in Archaeology: Experiencing the Reconstruction of the Past
source International Journal of Architectural Computing vol. 7 - no. 1, 57-76
summary This paper presents the outcome of the research project: "Integrated Technologies of Robotics and Virtual Environments in Archaeology", financed by the Italian Ministry of the University and Scientific Research, FIRB (Funds for the Investments of Basic Research). The aim of the project is to experiment and realize a multi-user domain on the web aimed to a multidisciplinary scientific community: archaeologists, historians, experts in human and social sciences, communication experts. The capacity to load, share and interact with data in the same spatial virtual environment can increase the level of learning and scientific communication. The project is the result of the collaboration between CNR-ITABC of Rome, the University of California, Merced, the Department of Archaeology of the University of Pisa and Scuola S. Anna of Pisa. It focuses on three archaeological sites: the Teban tomb 14 in the necropolis of Gurna, Fayum Medinet Madi, both in Egypt, and Khor Rori, in Oman. The collaborative environment is constructed through a virtual reality system. This allows to create a virtual space where it is possible to share 3D information on the project and to host additional behaviors of the scientific community.
series journal
last changed 2009/06/23 08:07

_id ijac20097103
id ijac20097103
authors Guidi, Gabriele; Remondino, Fabio; Russo, Michele; Menna, Fabio; Rizzi, Alessandro; Ercoli, Sebastiano
year 2009
title A Multi-Resolution Methodology for the 3D Modeling of Large and Complex Archeological Areas
source International Journal of Architectural Computing vol. 7 - no. 1, 39-55
summary This article reports on a multi-resolution and multi-sensor approach developed for the accurate and detailed 3D modeling of the entire Roman Forum in Pompei, Italy. The archaeological area, approximately 150 × 80 m, contains more than 350 finds spread all over the forum as well as larger mural structures of previous buildings and temples. The interdisciplinary 3D modeling work consists of a multi-scale image- and range-based digital documentation method developed to fulfill all the surveying and archaeological needs and exploit all the intrinsic potentialities of the actual 3D modeling techniques. The data resolution spans from a few decimeters down to few millimeters. The employed surveying methodologies have pros and cons which will be addressed and discussed. The results of the integration of the different 3D data in seamlessly textured 3D model are finally presented and discussed.
series journal
last changed 2009/06/23 08:07

_id caadria2009_067
id caadria2009_067
authors Nilkaew, Piyaboon
year 2009
title The Study of Building Management by using 3D Digital Modeling and Database: ABFM
doi https://doi.org/10.52842/conf.caadria.2009.235
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 235-243
summary The principal objective of building management is to control facilities planning and facilities operations and maintenance, that effective criteria in strategic planning about preventive maintenance and predictive maintenance. The key of success in managing the building and facilities is all about collecting and interpreting data on diverse facets of property use. Computer databases are the ideal vehicles in which to log, store and manipulate data; almost unlimited information can be measured and entered en masse. The strength of such information storage is its capacity for expansion and the diversity of subject; it becomes large and requires greater and greater operator familiarity with its structure in order to interrogate successfully. The ultimate solution is to computer–base the entire operation, by using the three-dimensional building modelling to control the operation. This solution will simulate building in virtual environment and the building system data (Architectural part and Engineering part) will collect in digital data type. The digital data will classification and made three-dimensional database relations. This research focus in three sections of the operation as three-dimensional database relationship, topological simulation and smart system, that applied to generate the prototype building management application “Architecture Building Facilities Management: ABFM”.
keywords Building management; facilities management; 3D database; smart system
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia09_122
id acadia09_122
authors Oxman, Neri
year 2009
title Material-Based Design Computation: Tiling Behavior
doi https://doi.org/10.52842/conf.acadia.2009.122
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 122-129
summary From natural objects to man-made artifacts, tiling is all around us: it is the act of rationalizing highly complex form by breaking it up into smaller, continuous components. If well pursued, tiled objects can be easily designed and assembled. However, a geometric-centric view of tiling, whereby a predefined form determines the shape, size, and organization of tiles, has victimized the field of digital design. This paper questions the role of tiling as rationalizing method and offers an alternative theoretical framework and technical grounding for tiling behavior: the act of generation-through-tessellation informed by material behavior. The tools developed are implemented in the design of a 3D-printed chaise lounge, using multiple materials. The technical objective is to introduce a quantitative characterization and analysis of property mapping, as it is applied to a tiling algorithm using Voronoi cell tessellation. The network of tessellated Voronoi cells is used as an element in the Voronoi Finite Element Method (V-FEM) that the author developed. Various characterization functions and geometric parameters are generated, and V-FEM is executed for plane-strain analysis of doubly curved surfaces, from which global and local responses are evaluated.
keywords Tessellation, tiling, Voronoi, Algorithmic design
series ACADIA
type Normal paper
email
last changed 2022/06/07 08:00

_id f4c5
id f4c5
authors Wang, Xiangyu; Schnabel, Marc Aurel (eds)
year 2009
title Mixed Reality In Architecture, Design, And Construction
source Springer 2009, XIV, 274 p., Hardcover ISBN: 978-1-4020-9087-5
summary Mixed Reality is moving out of the research-labs into our daily lives. It plays an increasing role in architecture, design and construction. The combination of digital content with reality creates an exciting synergy that sets out to enhance engagement within architectural design and construction.

State-of-the-art research projects on theories and applications within Mixed Reality are presented by leading researchers covering topics in architecture, design collaboration, construction and education. They discuss current projects and offer insight into the next wave of Mixed Reality possibilities.

Written for: Practitioners, academics, researchers, and graduate students at universities, and industrial researchers who work with MR and digital media in design and construction

Table of contents PREFACE, by Xiangyu Wang and Marc Aurel Schnabel;

1 MIXED REALITIES: Framing Mixed Realities, by Marc Aurel Schnabel;

2 MIXED REALITY IN DESIGN COLLABORATION: Approaches to Augmenting Virtual Design Environments with Reality, by Xiangyu Wang and Rui Chen; Communication in Augmented Reality Aided Architectural Design, by Hartmut Seichter; A Technological Review to Develop an AR-Based Design Supporting System, by Jin Won Choi; Exploring Presence and Performance in Mixed Reality-Based Design Space, by Xiangyu Wang and Mi Jeong Kim;

3 MIXED REALITY IN ARCHITECTURE: Mobile Architectural Augmented Reality, by Mark Billinghurst and Anders Henrysson; Augmented Reality Visualisation Facilitating the Architectural Process, by Bruce Hunter Thomas; Simulation of an Historic Building Using a Tablet Mixed Reality System, by Atsuko Kaga; Temporal Context and Concurrent Evaluation, by Jules Moloney;

4 MIXED REALITY IN CONSTRUCTION: Key Areas and Issues for Augmented Reality Applications on Construction Sites, by Phillip S Dunston and Do Hyoung Shin; Tracking Technologies for Outdoor Mixed Reality Applications, by Amin Hammad; Augmented 3D Arrows Reach their Limits in Automotive Environments, by Marcus Tönnis and Gudrun Klinker;

5 MIXED REALITY IN EDUCATION / LEARNING: Visualising Future Cities in the ETH Value Lab, by Remo Burkhard and Gerhard Schmitt; Interplay of Domains: New Dimensions of Design Learning in Mixed Realities, by Marc Aurel Schnabel; Debating Opportunities: Learning Design through Different Structures, by Thomas Kvan;

POSTSCRIPT: Epilogue, by Marc Aurel Schnabel and Xiangyu Wang;

Author Biographies; Glossary; References; Index.

keywords architecture, design and construction, mixed reality
series book
type normal paper
email
more http://www.springerlink.com/content/978-1-4020-9087-5
last changed 2009/03/06 11:51

_id ijac20097408
id ijac20097408
authors Biloria, Nimish; Valentina Sumini
year 2009
title Performative Building Skin Systems: A Morphogenomic Approach Towards Developing Real-Time Adaptive Building Skin Systems
source International Journal of Architectural Computing vol. 7 - no. 4, 643-676
summary Morphogenomics, a relatively new research area, involves understanding the role played by information regulation in the emergence of diverse natural and artificially generated morphologies. Performative building skin systems as a bottom-up parametric formation of context aware interdependent, ubiquitously communicating components leading to the development of continually performative systems is one of the multi-scalar derivations of the aforementioned Morphogenomic understanding. The agenda of adaptations for these building skins specifically corresponds to three domains of adaptation: structural, behavioral and physiological adaptations resulting in kinetic adaptability, energy generation, conservation, transport and usage principles as well as material property based changes per component. The developed skins adapt in real time via operating upon ubiquitous communication and data-regulation protocols for sensing and processing contextual information. Computational processes and information technology based tools and techniques such as parametric design, real-time simulation using game design software, environmental information mapping, sensing and actuating systems coupled with inbuilt control systems as well as manufacturing physical models in collaboration with praxis form a vital part of these skin systems. These experiments and analysis based on developing intrinsic inter-dependencies between contextual data, structure and material logistics thus lay the foundation for a new era of continually performing, self powering, real-time adaptive intelligent building skin systems.
series journal
last changed 2010/09/06 08:02

_id sigradi2009_964
id sigradi2009_964
authors Castriota, Leonardo Barci; Rezende
year 2009
title Fotografia digital e imagens multi-perspectivas no estudo de sítios históricos [Digital photography and multi-perspective image in the study of historical sities]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The creation of panoramic images for depicting urban landscape is a technique that has its origins in Antiquity. These images, which are known to represent large urban areas from multiple views, can be considered true works of art. Recently there has been a growing interest by some researchers, especially in the area of computer graphics, in the production of multi-perspective images for representing historic sites. However, the focus of these studies has been especially the computational aspects of this process, and there are few studies that address the impact and possibilities of these methodologies in historic preservation and urban planning. Realizing this shortcoming and considering the demand for a perspective more connected to cultural heritage, our proposal is to associate the excellent visual results of the multi-perspective images to the rich possibilities of computer simulation that can provide digital photography. The fact is that in recent years we have experienced technological innovations in the field of computer simulation that far exceeded our expectations. While most surveys of buildings are still based on the use of tape measure, pencil, paper and camera, the computer has become increasingly the main interface between the user and the information and is now the preferred instrument for the production and viewing of images, including the creation of virtual environments. Thus, this work seeks to explore the great potential which seems to exist in the combination of digital photography and the technique of multi-perspective image representation, which may provide new approaches and perspectives for the field of historic preservation. For that, we present a rapid and low cost methodology, developed in recent years, which generates orthophotos and metric multi-perspective images, useful for the analysis of built heritage and historic sites. In addition to that, we will also discuss further possible byproducts of this methodology, among which we could highlight the creation of three-dimensional models, and the analysis of building pathologies in combination with thermal photography. As a case study, we will present a representation of the Rua dos Caetés, a listed historic district in Belo Horizonte (MG), Brazil.
keywords Photogametry; Digital Photography; Heritage; Conservation
series SIGRADI
email
last changed 2016/03/10 09:48

_id caadria2009_174
id caadria2009_174
authors Chen, Chiung-Hui
year 2009
title A Prototype Using Multi-Agent Based Simulation in Spatial Analysis and Planning
doi https://doi.org/10.52842/conf.caadria.2009.513
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 513-521
summary Pedestrian’s movements and spatial cognition in urban environments are main issues for urban designers in urban spatial planning and analysis. This paper aims to study interactions between a behavioural model of pedestrians and urban spaces. The pedestrians can be represented by an agent program, and behavioural reactions of walking agents under different stimulus can be further simulated. Thus, this study suggests that, a correlation study on pedestrian behaviours and spatial environments become the criterion for urban designers in order to help them create better flows.
keywords Spatial analysis, multi-agent, behaviour, simulation
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2009_195
id ecaade2009_195
authors Gürer, Ethem; Çagdas, Gülen
year 2009
title An Emergent Form Generation Method for Supporting Conceptual Design
doi https://doi.org/10.52842/conf.ecaade.2009.167
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 167-172
summary Evolutionary design methodologies generally aim to present new form-finding processes, where nature-based approaches are used, such as self-organization, genetic algorithms etc. This paper aims to present a new architectural design approach that focuses on integrating these different evolutionary methods in an emergent process. The main goal is to achieve a high-level of integration where lacking qualities of each evolutionary method are completed by the other one in a synergic and especially emergent behavior. A multi-level design approach is described in this study. Points highlighted are concerned with the pre-design phases. Within a bottom-top simulation, an infinite high-level solution cluster is revealed from behavioral interactions and collectivity of the low-level entities: agents. Simulated design process is visualized by a determined project area in Istanbul: Kuruçe_me Island on the Bosphorus as an exhibition center. Programmed in 3dsMax, simulation phase supports the creative design process in early phases.
wos WOS:000334282200020
keywords Evolutionary design, bottom-top approach, self-organization, agent, emergence
series eCAADe
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_467378 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002