CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 593

_id ecaade2009_021
id ecaade2009_021
authors Fleischmann, Moritz; Ahlquist, Sean
year 2009
title Cylindrical Mesh Morphologies: Study of Computational Meshes based on Parameters of Force, Material, and Space for the Design of Tension-Active Structures
doi https://doi.org/10.52842/conf.ecaade.2009.039
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 39-46
summary In experimenting with digital processes for simulating the behavior of tension-active cable nets, a method was developed for creating informed geometries by utilizing computational meshes that carry properties of structure, space, and material. A spring-based particle system provided the dynamics to simulate the flow of tension force through the geometry. Particular functions were scripted to embed logics for fabrication and analysis of spatial parameters. This formulated a lightweight, reactive design tool for which multiple cable net morphologies could be quickly generated. This paper will describe the experiments in creating the method to generate such cable net morphologies, and discuss the potential application for this computational framework to apply to other architectural systems.
wos WOS:000334282200003
keywords Computation, particle system, spring, dynamic relaxation, processing, fabrication
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2009_146
id caadria2009_146
authors Fagerström, Gustav
year 2009
title Dynamic Relaxation of Tensegrity Structures
doi https://doi.org/10.52842/conf.caadria.2009.553
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 553-562
summary The structural hierarchy inherent to tensegrities enables a building skin that performs on multiple levels simultaneously. While having one function in the global building mechanics, its individual components can work as self-contained systems balancing tensile and compressive forces locally within them. The behavior of elements under load is linear and thus describable analytically. When these are aggregated in a tensegrity however, the performance of the assembly as a whole is non-linear. In order to investigate further these relationships a method of dynamic relaxation will be developed. This tool allows for simulation and load analysis of a complex tensegrous network, based on the relationships between force, stiffness and dimension formulated by Young and the computational means provided by a parametric/associative modeling environment. This research investigates the possible formfinding through computational means of a double-layer tensegrity grid.
keywords Dynamic; relaxation; tensegrity; form finding
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2009_marek_hnizda
id ascaad2009_marek_hnizda
authors Hnizda, Marek
year 2009
title Systems-Thinking: Formalization of parametric process
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 215-223
summary This paper details a design process focused on explicit digital parametric modeling as an integral system-outcome design. This investigation isolates and alters a simple geometric form (cylinder) in a constructed architectural design method. Systems are defined as logical, sequential operations inherent to the resultant effects. These operations within each system are composed of various parameters, singular entities containing or referencing data. Given specific data, operations are preformed culminating with corresponding outcomes. The two main components of this research pertain to object extraction and transformation. A single grain silo (cylinder), as the architectural/geometric object under examination, is tested using a system of varied parameters inputted into the program Grasshopper, an “explicit history” graphic plug-in for Rhinoceros. This application is utilized to digitally manipulate parameters as objects in a nodal arrangement. Throughout the operations execution, this isolated silo will be transformed into a multitude of versions, then regrouped into the original cluster of silos to expose the implications from patterning, adjacency, and repetition given the proximity of the each silo and its new parametric characteristics. As the various parameters in specific operations affect the system as a whole, so is each adjacent silo in proximity given the same or similar operation? This then is translated and reflected in the outcome. This research seeks to explore design process by applying constant digital 3-D reductive geometric, modular forms inviting systems thinking in parametric environments that can lead to architectural design implications. By focusing on the technical aspect of the parameterization and valuing functionality rather then style, the process becomes focused on formal qualities as the system-outcome relationships. This research tests the “aesthetic implications” of a varied mode of digital design, namely the investigation of an architectural process utilizing parametric design.
series ASCAAD
email
last changed 2009/06/30 08:12

_id caadria2009_092
id caadria2009_092
authors Liu, Chun-Hung; Chang-Franw Lee
year 2009
title The Design of a Mobile Navigation System Based on QR Codes for Historic Buildings
doi https://doi.org/10.52842/conf.caadria.2009.103
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 103-112
summary Due to the rapid development of mobile and compact electronic devices such as PDAs and smart phones, designers and developers now have to consider user mobility and the dynamic context of use in the design of interactive systems. In this study, literatures associated with mobile navigation systems in museums and historic buildings are first reviewed in order to understand the features, advantages, and drawbacks of current mobile navigation technology. The feasibility of applying QR codes in the navigation of historic buildings is then discussed, and the mobile navigation principles mentioned in previous literatures are applied in our proposed system. A number of common problems are encountered in the navigation of local historic buildings or museums. Visitors (1) cannot understand what makes an exhibited item a work of art; (2) do not know where to start or how to get started; (3) feel rushed by guides during the guided tour; and (4) find that the audio guide is not clear enough. Managers of historic buildings or museums are generally concerned about (1) the high cost of constructing a mobile navigation environment; (2) possible damage to devices; and (3) the cost of device maintenance. This study attempts to solve the above issues by constructing an affordable digital navigation environment that enables users to clearly understand each exhibited item and its location.
keywords Mobile navigation; QR code; historic buildings
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2009_039
id ecaade2009_039
authors Papapavlou, Aikaterini; Turner, Alasdair
year 2009
title Structural Evolution: A Genetic Algorithm Method to Generate Structurally Optimal Delaunay Triangulated Space Frames for Dynamic Loads
doi https://doi.org/10.52842/conf.ecaade.2009.173
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 173-180
summary This paper presents an evolutionary algorithm that draws its power from the literal interpretation of the natural system’s reproductive process at a microscopic scale with the scope of generating optimal Delaunay triangulated space frames for dynamic loads. The algorithm repositions a firm number of nodes within a space envelope, by establishing Delaunay tetrahedra and, consequently, creating adaptable optimised space frame topologies. The arbitrarily generated tetrahedralised structure is compared against a canonical designed one and the results of this comparison indicate that the method proposed has advantageous properties and is capable of generating an optimum structure that exceeds statically the performance of an engineered tetrahedralised space frame.
wos WOS:000334282200021
keywords Genetic Algorithms, optimization, delaunay triangulation, space frame
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2011_p018
id cf2011_p018
authors Sokmenoglu, Ahu; Cagdas Gulen, Sariyildiz Sevil
year 2011
title A Multi-dimensional Exploration of Urban Attributes by Data Mining
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 333-350.
summary The paper which is proposed here will introduce an ongoing research project aiming to research data mining as a methodology of knowledge discovery in urban feature analysis. To address the increasing multi-dimensional and relational complexity of urban environments requires a multidisciplinary approach to urban analysis. This research is an attempt to establish a link between knowledge discovery methodologies and automated urban feature analysis. Therefore, in the scope of this research we apply data mining methodologies for urban analysis. Data mining is defined as to extract important patterns and trends from raw data (Witten and Frank, 2005). When applied to discover relationships between urban attributes, data mining can constitute a methodology for the analysis of multi-dimensional relational complexity of urban environments (Gil, Montenegro, Beirao and Duarte, 2009) The theoretical motivation of the research is derived by the lack of explanatory urban knowledge which is an issue since 1970’s in the area of urban research. This situation is mostly associated with deductive methods of analysis. The analysis of urban system from the perspective of few interrelated factors, without considering the multi-dimensionality of the system in a deductive fashion was not been explanatory enough. (Jacobs, 1961, Lefebvre, 1970 Harvey, 1973) To address the multi-dimensional and relational complexity of urban environments requires the consideration of diverse spatial, social, economic, cultural, morphological, environmental, political etc. features of urban entities. The main claim is that, in urban analysis, there is a need to advance from traditional one dimensional (Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, Density maps) to the consideration of the simultaneous multi-dimensionality of urban systems. For this purpose, this research proposes a methodology consisting of the application of data mining as a knowledge discovery method into a GIS based conceptual urban database built out of official real data of Beyoglu. Generally, the proposed methodology is a framework for representing and analyzing urban entities represented as objects with properties (attributes). It concerns the formulation of an urban entity’s database based on both available and non-available (constructed from available data) data, and then data mining of spatial and non-spatial attributes of the urban entities. Location or position is the primary reference basis for the data that is describing urban entities. Urban entities are; building floors, buildings, building blocks, streets, geographically defined districts and neighborhoods etc. Urban attributes are district properties of locations (such as land-use, land value, slope, view and so forth) that change from one location to another. Every basic urban entity is unique in terms of its attributes. All the available qualitative and quantitative attributes that is relavant (in the mind of the analyst) and appropriate for encoding, can be coded inside the computer representation of the basic urban entity. Our methodology is applied by using the real and official, the most complex, complete and up-to-dataset of Beyoglu (a historical neighborhood of Istanbul) that is provided by the Istanbul Metropolitan Municipality (IBB). Basically, in our research, data mining in the context of urban data is introduced as a computer based, data-driven, context-specific approach for supporting analysis of urban systems without relying on any existing theories. Data mining in the context of urban data; • Can help in the design process by providing site-specific insight through deeper understanding of urban data. • Can produce results that can assist architects and urban planners at design, policy and strategy levels. • Can constitute a robust scientific base for rule definition in urban simulation applications such as urban growth prediction systems, land-use simulation models etc. In the paper, firstly we will present the framework of our research with an emphasis on its theoretical background. Afterwards we will introduce our methodology in detail and finally we will present some of important results of data mining analysis processed in Rapid Miner open-source software. Specifically, our research define a general framework for knowledge discovery in urban feature analysis and enable the usage of GIS and data mining as complementary applications in urban feature analysis. Acknowledgments I would like to thank to Nuffic, the Netherlands Organization for International Cooperation in Higher Education, for funding of this research. I would like to thank Ceyhun Burak Akgul for his support in Data Mining and to H. Serdar Kaya for his support in GIS.
keywords urban feature analysis, data mining, urban database, urban complexity, GIS
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2009_082
id ecaade2009_082
authors Wang, Chung-Yang
year 2009
title Effect on Architectural Representation through Dynamic and Static Design Methods
doi https://doi.org/10.52842/conf.ecaade.2009.497
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 497-504
summary For accelerating the birth of architectures, people apply logical inductions and definitions to design processes ambiguous in the past then explore the possibilities of design methods. Evolving with times and varied perspectives, there are gradually increasing ways which could generate the difference of the natures in architectures – dynamic or static. Architecture has its own mode of dynamic or static representation in every era. Many studies have pointed out this variation derives from the advances of design media, but there still apparently lacks studies focus on the relationship between design processes and architectural representation. Thus, this research aims to juxtapose design methods with dynamic and static representation in architecture then summarize the possible correlation between these factors.
wos WOS:000334282200060
keywords Statics/Dynamics, Design method, design media, architectural representation
series eCAADe
email
last changed 2022/06/07 07:58

_id ascaad2009_michael_ambrose
id ascaad2009_michael_ambrose
authors Ambrose, Michael A.
year 2009
title Spatial and Temporal Sequence: Film, animation and design theory - toward a constructed morphology
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 165-176
summary This paper presents an investigation of film, space, form and motion to expose issues of spatial perception. The objective is to use a brief moment of constructed moving imagery (a film scene) as the vehicle to develop a spatial/temporal sequence. The design research focuses on an examination of the procedure or process constructed by the director/cinematographer. The changing position of the camera continually changes the relationship of the frame to the viewed context. The project asks the student to interpret the spatial and temporal transformation, through the continual oscillation between foreground and background, in an effort to unravel the pretext of the singular point of view to reveal the intention of the filmmaker. The project discussed here focuses on a relationship between the projection of space in architectural representation and the production of space through complex geometries relative to temporal discontinuities and the way in which they agitate and alter one another. Drawing topological relationships between of the paths, or trajectories of movement, within a proposed scene of a film is the vehicle for investigation in this project. An event or configuration complete in itself, but forming part of the larger collection, is modelled and transformed to suggest various structural and temporal definitions with respect to spatial portrayal through the composition of time and the cinematic frame. In particular, spatial animation of a sequence of framed condition was to be explored in the development of a spatial episode.
series ASCAAD
email
last changed 2009/06/30 08:12

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id 96d8
id 96d8
authors Booth, Peter; Loo, Stephen
year 2009
title Beyond Equilibrium: Sustainable Digital Design
source Sustainable theory/ theorizing sustainability Proceedings from the 5th International Conference of the Association of Architecture Victoria University, New Zealand, 4-5 September 2009
summary Implicit in current understandings of sustainability is the presence of a closed system with the capacity of equilibration. Sustainable practices, including design practices, are therefore assumed to possess a redemptive role: design is deployed (as environmentally sustainable design, etc.) to change habits, develop new technologies and recover marginalized practices in the hope of righting the balance between the environment and human endeavours.

Recent developments in experimental digital design have demonstrated non‐linear and highly complex relations between topological transformations, material change, and the temporal dimension of forces. More importantly, this method of design is bottom‐up, because it does not rely on design solutions presaged by conventions, or restricted by representation, but is emergent within the performance of computational design itself. We argue that digital design processes need to move beyond the flux of determinates and solutions in equilibrium, towards a radically continuous but consistent production, which is in effect, an expression of sustainable pedagogy.

The role of emergent digital techniques has significant impact on the methods in which computation is utilized within both practice and academic environments. This paper outlines a digital design studio on sustainability at the University of Tasmania, Australia that uses parametric modelling, digital performance testing, and topological morphology, concomitant with actual material fabrication, as a potent mode of collaborative design studio practice towards a sustainable design pedagogy.

keywords digital, computation, process, morphogenesis.
series other
type normal paper
email
last changed 2009/09/08 23:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2009_002
id ecaade2009_002
authors Choo, Seung Yeon; Heo, Kyu Souk; Seo, Ji Hyo; Kang, Min Soo
year 2009
title Augmented Reality- Effective Assistance for Interior Design: Focus on Tangible AR Study
doi https://doi.org/10.52842/conf.ecaade.2009.649
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 649-656
summary This article presents an application of Augmented Reality technology for interior design. Plus, an Educational Interior Design Project is reviewed. Along with the dramatic progress of digital technology, virtual information techniques are also required for architectural projects. Thus, the new technology of Augmented Reality offers many advantages for digital design and construction fields. AR is also being considered as a new design approach for interior design. In an AR environment, virtual furniture can be displayed and modified in real-time on the screen, allowing the user to have an interactive experience with the virtual furniture in a real-world environment. Finally, this study proposes a new method for applying AR technology to interior design work, where a user can view virtual furniture and communicate with 3D virtual furniture data using a dynamic and flexible user interface. Plus, all the properties of the virtual furniture can be adjusted using occlusion based interaction methods for a Tangible Augmented Reality.
wos WOS:000334282200078
keywords Interior design, augmented reality, ARToolKit, tangible AR, interactive augmented reality
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2009_danilo_di_mascio
id ascaad2009_danilo_di_mascio
authors Di Mascio, Danilo
year 2009
title Digital Reconstruction and Analysis of Turchinio’s Trabocco: A method of digital reconstruction of a complex structure as a way to improve our knowledge of a cultural heritage artifact
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 177-189
summary The aim of the following paper is to show a method of digital reconstruction and analysis of an important artifact pertaining to the Abruzzo cultural heritage, the ‘trabocco’. In fact recent software for graphics and architecture, such as CAD, graphics editor, and those dedicated to three-dimensional modeling and rendering are tools that open new opportunities in the study of cultural heritage artifacts, The more the complexity of the object to study, the more the advantages for their use. A formal and structural complexity characterize the trabocchi, pile constructions typical of the Abruzzo coast, that go back to the middle of XVII century and the subject of this study is the trabocco of Punta Turchinio, the most famous and complex of the coast. Among the digital reconstruction’s objectives there are: Increase the knowledge of the ‘trabocco’ and generate a series of information necessary to define and manage a recovery plan; to study more deeply the technologic decomposition of the four main sub-systems with related abacus of the technological elements and create static and animated graphics restitutions such as renderings and animations to understand some spatial and formal characteristics.
series ASCAAD
email
last changed 2009/06/30 08:12

_id caadria2010_008
id caadria2010_008
authors Di Mascio, Danilo
year 2010
title Preserving memories with digital media: a methodology for the reconstruction of Castelnuovo Village
doi https://doi.org/10.52842/conf.caadria.2010.083
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 83-92
summary The historical centre of the village of Castelnuovo (located in Abruzzo, a region in central of Italy) was seriously damaged by the earthquake of the 6th of April 2009. Following the survey by the Civil Protection, all dwellings have been classified as unsuitable for habitation. The village should be either abandoned or totally rebuilt. But which is its value? Is there something worth of being preserved? If observed from a biodiversity point of view, or more precisely from a “cultural biodiversity” point of view, the historical centre possess interesting materials and immaterial characteristics. These qualities constitute real guidelines for a possible recovery project. Since there is not any possibility to make a survey of the inner village because of its destruction by the earthquake, in this research we have decided to use information technology, in order to rebuilt it and study it in a three-dimensional environment. In this paper we describe the theoretical basis, the method of elaboration and the instruments we have used to locate and evaluate the memories that should be preserved in a new project. Starting with a traditional documentation, such as photographs and drawings, we have used a variety of software (graphics editing program, CAD, 3D modeler, videogame 3D-engine), because of the several hypothesis considered.
keywords Digital heritage; digital design; design methods; digital reconstruction; memories conservation
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2009_1002
id sigradi2009_1002
authors Fischer, Gustavo; Celso Skaletsky
year 2009
title Intuição e método de design [Intuition and design method]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The creative processes by which designers go through are frequently associated with the notion of intuition. This paper is part of an initial discussion that relies on some concepts brought by Bergson to discuss theoretically about specific tools or design instruments. Three of these instruments that use the image as a mean of representation and elaboration of ideas are discussed: the mood board, the blue sky research and the storyboard.
keywords Design; Method; instruments; intuition
series SIGRADI
email
last changed 2016/03/10 09:51

_id ascaad2009_samir_foura
id ascaad2009_samir_foura
authors Foura, Samir and Samira Debache
year 2009
title Thermal Simulation In Residential Building Within Computer Aided Architectural Design: Integrated model
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 235-243
summary Nowadays, the architectural profession is seeking a better energy saving in the design of buildings. The fear of energy shortage in the very near future, together with the rapid rise in energy prices, put pressure on researchers on this field to develop buildings with more efficient heating systems and energy systems. This work is concerned mainly with the development of a software program analyzing comfort in buildings integrated in CAD architectural systems. The problem of presenting the computer with information concerning the building itself has been overcome through integration of thermal analysis with the building capabilities of CAD system. Mainly, such experience concerns the rules for calculating heat loss and heat gain of buildings in Algeria, The program has been developed in order to demonstrate the importance of the innovation of the computer aided-architectural-design field (CAAD) in the technology of buildings such as the three dimensional modeling offering environmental thermal analysis. CAAD is an integrated architectural design system which can be used to carry out many tasks such as working drawings, perspectives and thermal studies, etc., all from the same data. Results are obtained in tabular form or in graphical output on the visual display. The principle of this program is that all input data should be readily available to the designer at the early stages of the design before the user starts to run the integrated model. Particular attention is given to the analysis of thermal aspects including solar radiation gains. Average monthly energy requirement predictions have been estimated depending on the building design aspect. So, this integrated model (CAAD and simulation comfort) is supposed to help architects to decide on the best options for improving the design of buildings. Some of these options may be included at the early design stages analysis. Indications may also be given on how to improve the design. The model stored on CAAD system provides a valuable data base for all sort analytical programs to be integrated into the system. The amount of time and expertise required to use complex analytical methods in architectural practice can be successfully overcome by integration with CAAD system.
series ASCAAD
email
last changed 2009/06/30 08:12

_id acadia09_255
id acadia09_255
authors Frumar, Jerome; Zhou, Yi Yi
year 2009
title Kinetic Tensegrity Grids with 3D Compressed Components
doi https://doi.org/10.52842/conf.acadia.2009.255
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 255-258
summary This paper details a series of preliminary explorations into the concept of kinetic tensegrity grids that can respond to stimuli by changing their shape, porosity, and transparency. The research presented explores double-layer tensegrity grids that utilize 3D “compressed” components. A case study demonstrates their applicability to the formation of sophisticated building envelopes that can actively or passively respond to changes in the environment. A computational form-finding tool is introduced to study design variations in real time. This tool is shown to expand the design spectrum by supporting increased complexity and revealing unexpected design potential. This research is significant as it outlines a practical methodology for conceiving responsive building systems. In particular, it illustrates an approach that synthesizes design concerns with engineering and fabrication goals.
series ACADIA
type Short paper
email
last changed 2022/06/07 07:50

_id ecaade2009_193
id ecaade2009_193
authors Frumar, Jerome; Zhou, Yiyi
year 2009
title Beyond Representation: Real Time Form Finding of Tensegrity Structures with 3d ‘Compressed’ Components
doi https://doi.org/10.52842/conf.ecaade.2009.021
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 21-30
summary Tensegrity structures are of interest to architecture and engineering as a practical means to explore lightweight and rapidly deployable modular structures that have a high degree of geometric freedom and formal potency. The notion of tensegrity structures with 3D ‘compressed’ components is introduced and their feasibility is demonstrated through selected physical models. Attempts to further explore the architectural potential of tensegrity structures within a computational environment have proven difficult, as they are statically indeterminate and require form finding procedures to “find a geometry compatible with a self-stress state” (Motro 2002). An overview of tensegrity ‘capable’ software that can be used for architectural design is followed by a discussion that introduces an additional computational method based on particle-spring systems. This approach enables real time manipulation of tensegrity networks. Two projects that utilize this unique tool are described.
wos WOS:000334282200001
keywords Form finding, particle-spring, tensegrity, 3D compressed component
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2009_177
id ecaade2009_177
authors Göttig, Roland; Braunes, Jörg
year 2009
title Building Survey in Combination with Building Information Modelling for the Architectural Planning Process
doi https://doi.org/10.52842/conf.ecaade.2009.069
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 69-74
summary The architectural planning process is influenced by social, cultural and technical aspects (Alexander, 1977). When focussing on computer based planning for retrofitting or modification of buildings it becomes clear that many different data formats are used depending on a great variety of planning methods. Moreover, if building information models are utilized they still lack some essential criteria. It is rarely possible to attach individual data from survey systems. This paper will show both a way to add data from building survey systems as an example for special data attachment on IFC files and how to utilize content management systems for IFC files, deviated plans, lists of building components, and other data necessary in a planning process.
wos WOS:000334282200007
keywords Planning process, building information modeling, IFC, building survey systems, content management systems
series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_413653 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002