CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 590

_id 4f1b
id 4f1b
authors Booth, Peter
year 2009
title Digital Materiality: emergent computational fabrication
source Performative Ecologies in the Built Environment: Sustainability Research Accross Disciplines: 43rd Annual Conference of the Australian and New Zealand Architectural Science Association
summary Fundamentally architecture is a material-based practice that implies that making and the close engagement of materiality is intrinsic to design process. With the rapid uptake of new computational tools and fabrication techniques by the architectural profession there is potential for the connection between architecture and materiality to be diminished. Innovative digital technologies are redefining the relationship between design and construction encoding in the process new ways of thinking about architecture. A new archetype of sustainable architectural process is emerging, often cited as Digital Materialism. Advanced computational processes are moving digital toolsets away from a representational mode towards being integral to the design process. These methods are allowing complex design variables (material, fabrication, environment, etc.) to be interplayed within the design process, allowing an active relationship between performative criteria and design sustainability to be embedded within design methodology.
keywords Digital, Process, Material, Fabrication
series other
type normal paper
email
last changed 2010/03/06 02:53

_id 96d8
id 96d8
authors Booth, Peter; Loo, Stephen
year 2009
title Beyond Equilibrium: Sustainable Digital Design
source Sustainable theory/ theorizing sustainability Proceedings from the 5th International Conference of the Association of Architecture Victoria University, New Zealand, 4-5 September 2009
summary Implicit in current understandings of sustainability is the presence of a closed system with the capacity of equilibration. Sustainable practices, including design practices, are therefore assumed to possess a redemptive role: design is deployed (as environmentally sustainable design, etc.) to change habits, develop new technologies and recover marginalized practices in the hope of righting the balance between the environment and human endeavours.

Recent developments in experimental digital design have demonstrated non‐linear and highly complex relations between topological transformations, material change, and the temporal dimension of forces. More importantly, this method of design is bottom‐up, because it does not rely on design solutions presaged by conventions, or restricted by representation, but is emergent within the performance of computational design itself. We argue that digital design processes need to move beyond the flux of determinates and solutions in equilibrium, towards a radically continuous but consistent production, which is in effect, an expression of sustainable pedagogy.

The role of emergent digital techniques has significant impact on the methods in which computation is utilized within both practice and academic environments. This paper outlines a digital design studio on sustainability at the University of Tasmania, Australia that uses parametric modelling, digital performance testing, and topological morphology, concomitant with actual material fabrication, as a potent mode of collaborative design studio practice towards a sustainable design pedagogy.

keywords digital, computation, process, morphogenesis.
series other
type normal paper
email
last changed 2009/09/08 23:21

_id acadia09_110
id acadia09_110
authors Gharleghi, Mehran; Sadeghy, Amin
year 2009
title Adaptive Pneus
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 110-117
doi https://doi.org/10.52842/conf.acadia.2009.110
summary The research focuses on the performative capacities of a pneumatic material system in regards to the specific environmental conditions. The use of Adaptation as a mechanism to modulate environmental performance was the main focus of the design process and research. The location of the sun during the day acts as a trigger to adapt the system, allowing the system to passively augment the environmental conditions. A new form-finding method that combines digital and material processes has been the main method by which the experiments were undertaken. This approach necessitates a dramatic shift in the architectural design, from producing static to environmentally responsive objects. It requires a shift in thinking from buildings as static and non-active systems to material system existing over time within specific environments capable of complex environmental performances.
keywords Responsive design, fabrication, prototyping, form finding, solar shading
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:51

_id ecaade2009_129
id ecaade2009_129
authors Hemmerling, Marco
year 2009
title Twister: An Integral Approach towards Digital Design and Construction
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 299-304
doi https://doi.org/10.52842/conf.ecaade.2009.299
wos WOS:000334282200036
summary The paper outlines the relevance of computational geometry within the design and production process of architecture. Based on the case study “Twister”, the digital chain - from the initial form-finding to the final realization of spatial concepts - is discussed in relation to geometric principles. The association with the fascinating complexity, which can be found in nature and its underlying geometry was the starting point for the project presented in the paper. The translation of geometric principles into a three-dimensional digital design model was followed by a process of transformation and optimization of the initial shape, that integrated aesthetic, spatial and structural qualities as well as aspects of material properties and conditions of production.
keywords Geometry, 3D modeling, rapid prototyping, photogrammetry, digital fabrication
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2009_938
id sigradi2009_938
authors Klinger, Kevin R.
year 2009
title Digital Design through Production Pedagogy: Cases Involving Student/Industry Collaboration
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Innovation through digital design in contemporary practice has led to completely new ways of designing and making architecture. To prepare for these innovative opportunities, students are turning to alternative skill sets than those traditionally gained in an architectural curriculum. This paper argues that we must reconstruct our architectural curricula in order to better prepare students for a shifting professional landscape. While current material-based production realities of translating digital design into built form have much in common with modernist traditions, exercises, sequences, and collaborative opportunities in schools should pass through a relevant lens examining the true potential of working with the information age.
keywords Digital fabrication; informed architecture; total design through production; collaboration; industry partnership
series SIGRADI
email
last changed 2016/03/10 09:54

_id cf2009_poster_45
id cf2009_poster_45
authors Okuda, Shinya
year 2009
title Bio-shell (Biodegradable vacuum-formed modularized shelter)
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary This poster demonstrates how digitally fabricated vacuum-formed components can provide a new type of lightweight construction applicable to architecture. Surface-active systems such as a thin-shell concrete domes are some of the most material-efficient structures. Despite their efficiency few have been constructed recently due to necessary extensive labor cost. However, the growing concern for a worldwide shortage of natural resources and rising material costs, suggests that we reconsider the use of efficient structures, such as surface-active systems. Vacuum formed plastics mainly used in industrial design have strong merit based on their fast and low-cost mass production. Together with the recent emergence of digital fabrication technologies, the vacuum forming process is becoming an attractive fabrication technique for new and innovative lightweight structures.
keywords Digital Fabrication, Biodegradable, lightweight structure
series CAAD Futures
type poster
email
last changed 2009/08/21 07:41

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ascaad2009_emmanuel_ruffo
id ascaad2009_emmanuel_ruffo
authors Ruffo, Emmanuel
year 2009
title Programming As an Evolutionary Concept for Architectural Education: From natural systems to computer science materialization to emergent and evolutionary embedded architectural design
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 47-59
summary Logic and evolution in ontogenetic processes for Architectural design was the title for a summer program taught at the Escuela de Arquitectura of the Universidad Anahuac from June to July 2008 in the State of Mexico, Mexico. Every single result in architectural design follows logical steps enclosed in the design processes. These logical processes evolve through space-time sequences in order to generate a diversity of possible solutions. In Biology an ontogenetic process refers to the development of an individual organism, anatomical or behavioral feature from the earliest stage to maturity. Following this development criteria students were encouraged to understand the main logics of natural and physical systems through the aid of computer programming. These logics must be understood as tridimensional geometries digitally generated. Right from the beginning all processes generated during the explorations and investigations had to be visualized as integral design performances. The integral design system must embedded structure, function, form and material capacities through the aid of computer programming, digital fabrication technologies and material assembling techniques. It is important to note that final prototypes had to demonstrate the diversity of capacities of the whole system in order to automate the components in evolution.
series ASCAAD
email
last changed 2009/06/30 08:12

_id ecaade2009_036
id ecaade2009_036
authors Tamke, Martin; Thomsen, Mette Ramsgard; Asut, Serdar; Josefsson, Kristoffer
year 2009
title Translating Material and Design Space: Strategies to Design with Curved Creased Surfaces
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 385-390
doi https://doi.org/10.52842/conf.ecaade.2009.385
wos WOS:000334282200046
summary This paper shares findings from the project DevA (Developable surfaces in Architecture), a research by design based project developed a collaboration between academic and industry partners. The project aims to investigate the use of curved sheet material in architecture using hybridised 3D modelling and pattern cutting techniques. The project investigates how digital design and fabrication technologies enable the development of new structural concepts through the new means of material specification and detailing at unprecedented levels of precision. The paper presents speculative research project as well as the demonstrator Reef Pattern.
keywords Complex surface design, CAD, material behavior in design, industrial and interdisciplinary collaboration, practice based research
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2009_018
id caadria2009_018
authors Ambrose, Michael; Benjamin G. Callam, Joseph Kunkel and Luc Wilson
year 2009
title How To Make A Digi-Brick
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 5-12
doi https://doi.org/10.52842/conf.caadria.2009.005
summary This project examines a non-traditional method of construction generated through a digital design process that leverages digital fabrication techniques related to masonry construction. Where as architects’ use of computers first affected shape and structure, it is now additionally affecting material, construction, and craft. This design proposal explores these concepts through the production of a wall using simple configuration and reconfiguration of a repeated module adaptable to differing and unique contexts and site conditions. The masonry module is designed and built through the exploration of a CAD-CAM process. The prototypes produced investigate the repetition of a single module unit, manipulated and interlocked resulting in a continuous surface that is more than just the sum of its individual parts. The material, construction and craft of each unit informs and challenges the entire project to question the making of the masonry module into a wall.
keywords Digital fabrication, design theory, digital design methods
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2009_957
id sigradi2009_957
authors Baerlecken, Daniel Michael; Gernot Riether
year 2009
title From texture to volume: an investigation in quasi-crystalline systems
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The relation between texture, pattern and massing is a fundamental question in architecture. Classical architecture, as Leon Battista Alberti states in “De re aedificatoria” (Book VI, Chapter 2), is developed through massing and structure first; texture is added afterwards to give the bold massing and structure beauty. Only the ornamentation adds pulcritudo to the raw structure and massing. Rather than starting with a volume and applying texture afterwards, the Digital Girih project started with textural operations that informed the overall volume later. The stereometric, top-down methodology is questioned through the bottom-up methodology of the Girih project. Girih lines of traditional Islamic patterns were used as a starting point. The aspect of 3-dimensionality was developed analogue as well as digital, using the deformability of different materials at various scales and digital construction techniques as parameters. The flexibility within the Girih rules allowed the system to adapt to different tasks and situations and to react to different conditions between 2- and 3- dimensionality. The project in that way explored a bottom-up process of form generation. This paper will describe the process of the project and explain the necessity of digital tools, such as Grasshopper and Rhino, and fabrication tools, such as laser cutter and CNC fabrication technology, that were essential for this process.
keywords Generative Design; Parametric Design; Tessellation; Form Finding; Scripting
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
doi https://doi.org/10.52842/conf.ecaade.2011.751
wos WOS:000335665500087
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2009_1100
id sigradi2009_1100
authors Celento, David
year 2009
title Digital Craft Meets the Ancient Art of Ceramics: Would the Bauhaus Approve?
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The Bauhaus was founded upon the controversial premise that emergent mechanical processes offered new and creative ways to explore materials. Today, we encounter equally tendentious scenarios where the designer often appears one step further removed—automated CNC machines are driven by computational machines. Like the early activities of the Bauhaus some view digital pursuits with suspicion; however, digital design/fabrication is the “Nächster Bauhaus Bewegun” offering opportunities for design innovation equal in significance to that of the Bauhaus. This paper partially examines the theoretical implications of digital design/fabrication, then presents a collaboration between an architect and artist re-examining the architectural cladding possibilities using digital tools to shape one of mankind’s most venerable materials—ceramics.
keywords Ceramics in architecture, mass customization, digital fabrication, parametric design
series SIGRADI
email
last changed 2016/03/10 09:48

_id acadia09_284
id acadia09_284
authors Cheng, Nancy Yen-wen; Hegre, Erik
year 2009
title Serendipity and Discovery in a Machine Age: Craft and a CNC Router
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 284-286
doi https://doi.org/10.52842/conf.acadia.2009.284
summary Our digital carving experiments reveal ways to invite discovery into the design process. Working with sketched lines, handcrafted finishing, geometric overlay, and tool path coding can lead a designer to unexpected results. Concentrating on forming processes moving through material over time encourages open-ended play. Iteratively examining how computer operations generate carved results provides a craftsman’s understanding of tools and materials.
series ACADIA
type Short paper
email
last changed 2022/06/07 07:55

_id acadia09_201
id acadia09_201
authors De Kestelier, Xavier; Buswell, Richard
year 2009
title A Digital Design Environment for Large- Scale Rapid Manufacturing
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 201-208
doi https://doi.org/10.52842/conf.acadia.2009.201
summary Innovation in architectural design often follows technological innovation. This innovation can often be related to advances in construction techniques or design tools. This paper focuses on the development of a digital design environment for a new manufacturing process that can produce large architectural components. The design environment can be customized so that it incorporates both the flexibility and the constraints of the construction technology, such that the components produced maximize the core concept of the technology. Rapid Prototyping is a mature technology that has been around for 25 years in the manufacturing and product design industries. It is used primarily to speed up the product design cycle time from concept to physical realization for evaluation; it is now gaining a foothold in contemporary architectural practice. A number of protagonists are taking the Rapid Prototyping concept a stage further by developing large-scale processes capable of printing architectural components; there are even claims of the ability to produce whole buildings. These processes will give the architect a new palette of choice in terms of component design, and promise similar levels of geometric freedom as the Rapid Prototyping counterparts.
keywords Rapid prototyping, fabrication, hardware, concrete printing
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:55

_id sigradi2020_9
id sigradi2020_9
authors Felipe, Bárbara L.; Nome, Carlos
year 2020
title Digital Fabrication Techniques: A systematic literature review
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 9-16
summary The materialization of architectural forms uses new processes aided by digital manufacturing techniques (FD). Five FD techniques stand out: sectioning (serial planes), tessellation, folding, contouring, and forming. This article's objective is to characterize the state of the art of these techniques, from 2009 to 2020 in national and international research bases. The Systematic Literature Review is used from three stages and nine protocol phases. The results indicate the techniques, methods, computer simulations, and applicability in more recurrent materials.
keywords Digital Fabrication techniques, Digital Fabrication, Algorithmic Architecture; Parametric Design.
series SIGraDi
email
last changed 2021/07/16 11:48

_id sigradi2009_968
id sigradi2009_968
authors Figueiredo, Bruno Acácio Ferreira; José P. Duarte
year 2009
title Making customized tree-like structures: Integrating algorithmic design with digital fabrication
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The ultimate goal of this paper is to contribute for the discussion on the role of digital technologies in architecture, focusing on the convergence of generative design systems with digital fabrication processes for expanding design capabilities. It presents a generative design system of customized tree-like structures for supporting irregular roof surfaces, as an alternative to conventional architectural design processes. It discusses the introduction of an algorithmic and parametric approach to design problems as a methodology for promoting design experimentation and enabling the fabrication of complex design configurations.
keywords Generative Design System; Parametric Design; Digital Fabrication; CAD/CAM; AutoLISP
series SIGRADI
email
last changed 2016/03/10 09:51

_id ecaade2009_021
id ecaade2009_021
authors Fleischmann, Moritz; Ahlquist, Sean
year 2009
title Cylindrical Mesh Morphologies: Study of Computational Meshes based on Parameters of Force, Material, and Space for the Design of Tension-Active Structures
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 39-46
doi https://doi.org/10.52842/conf.ecaade.2009.039
wos WOS:000334282200003
summary In experimenting with digital processes for simulating the behavior of tension-active cable nets, a method was developed for creating informed geometries by utilizing computational meshes that carry properties of structure, space, and material. A spring-based particle system provided the dynamics to simulate the flow of tension force through the geometry. Particular functions were scripted to embed logics for fabrication and analysis of spatial parameters. This formulated a lightweight, reactive design tool for which multiple cable net morphologies could be quickly generated. This paper will describe the experiments in creating the method to generate such cable net morphologies, and discuss the potential application for this computational framework to apply to other architectural systems.
keywords Computation, particle system, spring, dynamic relaxation, processing, fabrication
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2009_792
id sigradi2009_792
authors Flório, Wilson
year 2009
title Modelagem Paramétrica em Arquitetura: Estratégias para Materializar Formas Complexas [Parametric Modeling in Architecture:strategies to materializing complex shapes]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This research investigates the relation between parametric modeling (PM) and digital fabrication (DF) of complex shapes in architecture. The complexity involving the recent designs in architecture has demanded new procedures, as much during the conception as to make possible its construction. Thus, the PM and the DF have allowed architects and engineers conceiving, detailing and constructing complex structures with more precision and faster. In this paper, the author contributes for a discussion in this field, still incipient in Brazil, particularly in the process of PM teach-learning.
keywords Parametric Modeling; Digital Fabrication; Construction; Contemporary Architecture; Complexity
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2009_676
id sigradi2009_676
authors Garcia Alvarado, Rodrigo
year 2009
title Modelos Constructivos por Fabricación Digital [Constructive Models by Digital Fabrication]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Digital manufacturing allows to elaborate constructive models to study material conditions and industrialization of building designs. This paper exposes strategies to develop models based on structural sections of 3D volumes, cutting profiles in BIM software, flexible manufacturing of building types and development of constructive systems. These procedures demonstrate combination of design and manufacturing technologies that encourages integrated building and new architectural possibilities.
keywords Digital Manufacturing; Building Industrialization; 3D-modeling; CAD/CAM; BIM
series SIGRADI
email
last changed 2016/03/10 09:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_606215 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002