CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 593

_id ecaade2009_156
id ecaade2009_156
authors Karzel, Rüdiger; Matcha, Heike
year 2009
title Experimental Design-Build: Teaching Parameter-based Design
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 153-158
doi https://doi.org/10.52842/conf.ecaade.2009.153
wos WOS:000334282200018
summary We present a student design class, in which experimental full-scale parametric objects are planned and built. The class explores the possibilities of digital production chains in which CAAM techniques driven by parametric modeling can expand the range of possibilities for designing and producing architecture. We show how those possibilities and techniques can be integrated into architectural education in facilitating a transition from digital design to actual object. The didactic challenge represents teaching a methodological approach towards parameter-based design, its transfer into a software program and the choice of construction and production method.
keywords Prototyping, parametric design, student design build projects, CAAM methods, evolutionary optimization
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2009_034
id ecaade2009_034
authors Shepherd, Paul
year 2009
title Digital Architectonics in Practice: Aarhus Botanical Garden Hothouse Competition
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 673-680
doi https://doi.org/10.52842/conf.ecaade.2009.673
wos WOS:000334282200081
summary Digital Architectonics is a term which refers to the application of digital technology to the architectural design process. This paper presents a new Digital Architectonics software tool, which allows various methods of 3D modeling, formfinding and optimization to be combined to generate and develop concept- and scheme-design options. The practical use of the software is demonstrated through the case study of the recent architectural competition to design a new hothouse for the Aarhus University Botanical Garden.
keywords Digital Architectonics, subdivision, optimization, formfinding, Aarhus
series eCAADe
email
last changed 2022/06/07 07:56

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2009_142
id caadria2009_142
authors Tang, Sheng Kai; Wen Yen Tang
year 2009
title Calligraphic Brush
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 433-440
doi https://doi.org/10.52842/conf.caadria.2009.433
summary The development of better User Interface (UI) and Tangible User Interface (TUI) for 3D modeling has lasted for decades. With the popularity of free form style achieved by algorithmic methods, the existing solutions of UI/TUI for CAD are gradually insufficient. Neglecting the steep learning curve of algorithmic design requiring solid background of mathematics and programming, the common drawback is the lack of interactivity. All actions rely heavily on mental translations and experimental trial and error. In this research, we try to realize the idea of interactive algorithmic design by developing a tangible calligraphic brush, with this device designer can intuitively adopt algorithmic methodology to achieve highly creative results.
keywords Intuitive interface: tangible user interface; algorithmic design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2009_071
id ecaade2009_071
authors Thompson, Emine Mine; Horne, Margaret
year 2009
title Sharing 3D City Models: An Overview
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 261-268
doi https://doi.org/10.52842/conf.ecaade.2009.261
wos WOS:000334282200032
summary This study describes the computing methods now available to enable the sharing of three-dimensional (3D) data between various stakeholders for the purposes of city modeling and considers the need for a seamless approach for sharing, transmitting, and maintaining 3D city models. The study offers an overview of the technologies and the issues related to remote access, collaboration, and version control. It builds upon previous research on 3D city models where issues were raised on utilizing, updating and maintaining 3D city models and providing access to various stakeholders. This paper will also describe a case study which is currently analyzing the remote access requirements for a sustainable computer model of NewcastleGateshead in England. Options available will be examined and areas of future research will be discussed.
keywords 3D City Models, sharing, remote access, virtual NewcastleGateshead
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2009_a_al_attili
id ascaad2009_a_al_attili
authors Al-Attili, A. and M. Androulaki
year 2009
title Architectural Abstraction and Representation: The embodied familiarity of digital space
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 305-321
summary This paper argues that familiarity is the tool that enables the understanding of space abstraction and representation. Familiarity in this context is independent from embodied interaction, and is crudely based on the connection between the various similar images of space; in this particular case, virtual space. Our investigation into the nature of human interaction with space, its abstraction and its representation is based on the critical contrast between the outcomes of interaction with two virtual versions of a physical reality; the first version is a non-linear interactive graphical abstraction of the space where no assertions or indicators are given as to whether or not there is a relationship between the abstraction and its physical reality, whereas the second is a none-linear interactive 3D virtual environment clearly representing the physical space in question. The paper utilises qualitative methods of investigation in order to gain an insight into human embodied experience in space, its abstraction and representation.
series ASCAAD
email
last changed 2009/06/30 08:12

_id ascaad2009_hafsa_al_omari
id ascaad2009_hafsa_al_omari
authors Al-Omari, Hafsa and Luma Al Dabbagh
year 2009
title Form in Islamic Architecture: A new vision by using 3D Studio Max program
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 433-450
summary Architecture is a record of human civilization, values, principles and concepts. Form (elements and relations) is one of the visual features of identity and self on one hand and expressive features of place and time (scientific and technical development ) on the other hand. Creating new forms from historical forms is considered one of the greatest challenges that face the architect. Research problem centered on the importance of form in Islamic architecture, and the possibility of investment a new scientific method ( 3D Studio Max program) in creating contemporary architecture using historical and traditional Islamic forms. Research divides to three sections. The first is a theoretical framework that determines the importance and the generation and the potentiality of form in Islamic architecture. The second studies the traditional methods that has been used to create a contemporary Arab-Islamic architecture using historical references, then introduce 3D Studio Max program as alternative new scientific method to traditional methods contribute to create a new vision of contemporary Arab Islamic architecture. The conclusions identify the importance of form in the Islamic civilization and showed that the generation of form affected by its potentiality. Research opens new methods that have not been studied previously in creating contemporary Islamic architecture by using the modifier stack in 3D Studio Max program.
series ASCAAD
email
last changed 2009/06/30 08:12

_id caadria2009_021
id caadria2009_021
authors Ambrose, Michael A.
year 2009
title BIM and Comprehensive Design Studio Education
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 757-760
doi https://doi.org/10.52842/conf.caadria.2009.757
summary Building Information Modeling (BIM) has the potential to fundamentally alter the way composition, scale and abstraction are addressed in today’s comprehensive design studio by displacing the primacy of abstract conventions of representation with a methodology based on systems thinking and virtual simulation. BIM viewed as provocateur of design education provides great potential for the critical analysis of how architectural design is taught. The design studio project reflects new ways of teaching and addressing BIM methods and processes, and critically evaluating their effects and possibilities on architectural production.
keywords Education; design theory; design studies; animation
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20097101
id ijac20097101
authors Boulaassal, H.; Landes, T.; Grussenmeyer, P.
year 2009
title Automatic Extraction of Planar Clusters and their Contours on Building Facades Recorded by Terrestrial Laser Scanner
source International Journal of Architectural Computing vol. 7 - no. 1, 1-20
summary Since 3D city models need to be realistic not only from a bird's point of view, but also from a pedestrian's point of view, the interest in the generation of 3D façade models is increasing. This paper presents two successive algorithms for automatically segmenting building façades scanned by Terrestrial Laser Scanner (TLS) into planar clusters and extracting their contours. Since majority of façade components are planes, the topic of automatic extraction of planar features has been studied. The RANSAC algorithm has been chosen among numerous methods. It is a robust estimator frequently used to compute model parameters from a dataset containing outliers, as it occurs in TLS data. Nevertheless, the RANSAC algorithm has been improved in order to extract the most significant planar clusters describing the main features composing the building façades. Subsequently, a second algorithm has been developed for extracting the contours of these features. The innovative idea presented in this paper is the efficient way to detect the points composing the contours. In order to evaluate the performances of both algorithms, they have successively been applied on samples with different characteristics, i.e. densities, types of façades and size of architectural details. Finally, a quality evaluation based on the comparison of planar clusters and contours obtained manually has been carried out. The results prove that the proposed algorithms deliver qualitative as well as quantitative satisfactory results and confirm that both algorithms are reliable for the forthcoming 3D modelling of building façades.
series journal
last changed 2009/06/23 08:07

_id ecaade2009_002
id ecaade2009_002
authors Choo, Seung Yeon; Heo, Kyu Souk; Seo, Ji Hyo; Kang, Min Soo
year 2009
title Augmented Reality- Effective Assistance for Interior Design: Focus on Tangible AR Study
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 649-656
doi https://doi.org/10.52842/conf.ecaade.2009.649
wos WOS:000334282200078
summary This article presents an application of Augmented Reality technology for interior design. Plus, an Educational Interior Design Project is reviewed. Along with the dramatic progress of digital technology, virtual information techniques are also required for architectural projects. Thus, the new technology of Augmented Reality offers many advantages for digital design and construction fields. AR is also being considered as a new design approach for interior design. In an AR environment, virtual furniture can be displayed and modified in real-time on the screen, allowing the user to have an interactive experience with the virtual furniture in a real-world environment. Finally, this study proposes a new method for applying AR technology to interior design work, where a user can view virtual furniture and communicate with 3D virtual furniture data using a dynamic and flexible user interface. Plus, all the properties of the virtual furniture can be adjusted using occlusion based interaction methods for a Tangible Augmented Reality.
keywords Interior design, augmented reality, ARToolKit, tangible AR, interactive augmented reality
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2010_008
id caadria2010_008
authors Di Mascio, Danilo
year 2010
title Preserving memories with digital media: a methodology for the reconstruction of Castelnuovo Village
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 83-92
doi https://doi.org/10.52842/conf.caadria.2010.083
summary The historical centre of the village of Castelnuovo (located in Abruzzo, a region in central of Italy) was seriously damaged by the earthquake of the 6th of April 2009. Following the survey by the Civil Protection, all dwellings have been classified as unsuitable for habitation. The village should be either abandoned or totally rebuilt. But which is its value? Is there something worth of being preserved? If observed from a biodiversity point of view, or more precisely from a “cultural biodiversity” point of view, the historical centre possess interesting materials and immaterial characteristics. These qualities constitute real guidelines for a possible recovery project. Since there is not any possibility to make a survey of the inner village because of its destruction by the earthquake, in this research we have decided to use information technology, in order to rebuilt it and study it in a three-dimensional environment. In this paper we describe the theoretical basis, the method of elaboration and the instruments we have used to locate and evaluate the memories that should be preserved in a new project. Starting with a traditional documentation, such as photographs and drawings, we have used a variety of software (graphics editing program, CAD, 3D modeler, videogame 3D-engine), because of the several hypothesis considered.
keywords Digital heritage; digital design; design methods; digital reconstruction; memories conservation
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2009_samir_foura
id ascaad2009_samir_foura
authors Foura, Samir and Samira Debache
year 2009
title Thermal Simulation In Residential Building Within Computer Aided Architectural Design: Integrated model
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 235-243
summary Nowadays, the architectural profession is seeking a better energy saving in the design of buildings. The fear of energy shortage in the very near future, together with the rapid rise in energy prices, put pressure on researchers on this field to develop buildings with more efficient heating systems and energy systems. This work is concerned mainly with the development of a software program analyzing comfort in buildings integrated in CAD architectural systems. The problem of presenting the computer with information concerning the building itself has been overcome through integration of thermal analysis with the building capabilities of CAD system. Mainly, such experience concerns the rules for calculating heat loss and heat gain of buildings in Algeria, The program has been developed in order to demonstrate the importance of the innovation of the computer aided-architectural-design field (CAAD) in the technology of buildings such as the three dimensional modeling offering environmental thermal analysis. CAAD is an integrated architectural design system which can be used to carry out many tasks such as working drawings, perspectives and thermal studies, etc., all from the same data. Results are obtained in tabular form or in graphical output on the visual display. The principle of this program is that all input data should be readily available to the designer at the early stages of the design before the user starts to run the integrated model. Particular attention is given to the analysis of thermal aspects including solar radiation gains. Average monthly energy requirement predictions have been estimated depending on the building design aspect. So, this integrated model (CAAD and simulation comfort) is supposed to help architects to decide on the best options for improving the design of buildings. Some of these options may be included at the early design stages analysis. Indications may also be given on how to improve the design. The model stored on CAAD system provides a valuable data base for all sort analytical programs to be integrated into the system. The amount of time and expertise required to use complex analytical methods in architectural practice can be successfully overcome by integration with CAAD system.
series ASCAAD
email
last changed 2009/06/30 08:12

_id ijac20097102
id ijac20097102
authors Georgopoulos, A.; Ioannidis, C.h.; Chrysostomou, C.h.; Ioakim, S.; Shieittanis, N.; Ioannides, M.
year 2009
title Contemporary Digital Methods for the Geometric Documentation of Churches in Cyprus
source International Journal of Architectural Computing vol. 7 - no. 1, 21-37
summary Recent advances in digital methods incorporating information technology have enabled the traditional surveyor and monument recorder to work faster, more accurately and in an automated way in order to produce advanced digital products, more versatile and more useful to the end users. Such methods include tacheometry, digital photogrammetry, as image-based method, terrestrial laser scanning and the development of specialized software in order to fully exploit the digital data acquisition. Usually, a combination of these methods gives the most efficient cost benefit results, by providing 2D vector and raster products and 3D textured models. In this paper two examples of the implementation of these methods in the geometric documentation of two churches, both significant for the history of Cyprus, are presented. It is concerned with the churches of Virgin Mary (Panayia) Podithou, in Galata and St. George Nikoxylitis in Droushia. The applied methodology, using classical and contemporary techniques of commercial and in-house developed software is presented. Comparative tests for the achieved accuracies and the completeness of each method's products have been made, and their merits and usefulness are explained.
series journal
last changed 2009/06/23 08:07

_id ecaade2009_177
id ecaade2009_177
authors Göttig, Roland; Braunes, Jörg
year 2009
title Building Survey in Combination with Building Information Modelling for the Architectural Planning Process
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 69-74
doi https://doi.org/10.52842/conf.ecaade.2009.069
wos WOS:000334282200007
summary The architectural planning process is influenced by social, cultural and technical aspects (Alexander, 1977). When focussing on computer based planning for retrofitting or modification of buildings it becomes clear that many different data formats are used depending on a great variety of planning methods. Moreover, if building information models are utilized they still lack some essential criteria. It is rarely possible to attach individual data from survey systems. This paper will show both a way to add data from building survey systems as an example for special data attachment on IFC files and how to utilize content management systems for IFC files, deviated plans, lists of building components, and other data necessary in a planning process.
keywords Planning process, building information modeling, IFC, building survey systems, content management systems
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2009_179
id ecaade2009_179
authors Halatsch, Jan; Kunze, Antje; Schmitt, Gerhard
year 2009
title Value Lab: a Collaborative Environment for the Planning of Future Cities
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 507-514
doi https://doi.org/10.52842/conf.ecaade.2009.507
wos WOS:000334282200061
summary This paper describes how the Value Lab is a) developed and b) used in education, research and workshops for (1) Interactive urban design and scenario planning that includes methods to support concurrent collaborative urban design over distances, and scenario planning based on defined case studies; (2) Visualization techniques for the detection and prediction of changes in urban environments; (3) Knowledge transfer to synthesize, interact with and communicate essential knowledge and findings from an array of disciplines for decision making, education, training, demonstration, and public discussions.
keywords Urban planning, information architecture, multi-touch displays, simulation, city modeling
series eCAADe
email
last changed 2022/06/07 07:50

_id ascaad2009_jonathan_healey
id ascaad2009_jonathan_healey
authors Healey, Jonathan T. and Lisa Lacharité-Lostritto
year 2009
title Speculative Assemblages of a Digital Process: The investigation of hybrid digital media as a pedagogical device
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 61-68
summary Within a digital-design pedagogy is opportunity to construct a design process working non-linearly in explicit systemic, conditional, and metaphorical operations. In the use of digital modeling and animation, speculative design methods develop across a series of incremental investigations that are structured, rather than dictated, by the particular architectural issues of composition and concept of place. By accommodating the diversity of such inputs, and testing the variable layers of output, new discrete compositions in the form of digital assemblage recombine and translate a series of logical premises and processes that resolve in non-prescribed outcomes. This paper identifies, through the work of two students, experimentations with computer-aided design that suggest the potential for hybrid design methods relevant to the exploratory nature of a digitally-inclined architectural pedagogy.
series ASCAAD
email
last changed 2009/06/30 08:12

_id sigradi2009_934
id sigradi2009_934
authors Kobayashi, Yoshihiro; Michael McDearmon
year 2009
title Rapid SmartCode Modeling - Procedural Modeling for Urban Environments
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This paper presents an image-driven method to rapidly generate 3D digital urban models for presentation in a real-time Virtual Reality (VR) environment. Several computational tools and methods are developed in order to give the end user the ability to transform a single 2D image into a realistically textured and rendered a 3D urban model. Using this method, city models based on SmartCode, a template for planning and urban design, are generated and presented in a VR visualization tool. The methods to generate VR city models including inputs, process, output, and pipeline are explained. One generated 3D city model is demonstrated in the results section.
keywords 3D city modeling; urban design; virtual reality; SmartCode, MaxScript
series SIGRADI
email
last changed 2016/03/10 09:54

_id ijac20097409
id ijac20097409
authors Madkour, Yehia; Oliver Neumann; Halil Erhan
year 2009
title Programmatic Formation: Practical Applications of Parametric Design
source International Journal of Architectural Computing vol. 7 - no. 4, 587-604
summary Programmatic Formation explores design as a responsive process. The study we present engages the complexity of the surroundings using parametric and generative design methods. It illustrates that responsiveness of designs can be achieved beyond geometric explorations. The parametric models can combine and respond simultaneously to design and its programmatic factors, such as performance-sensitive design-decisions, and constraints. We demonstrate this through a series of case studies for a housing tower. The studies explore the extent to which non-spatial parameters can be incorporated into spatial parametric dependencies in design. The results apply digital design and modeling, common to the curriculum of architecture schools, to the practical realm of building design and city planning. While practitioners are often slow to include contemporary design and planning methods into their daily work, the research illustrates how the incorporation of skills and knowledge acquired as part of university education can be effectively incorporated into everyday design and planning.
series journal
last changed 2010/09/06 08:02

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_395717 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002