CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 587

_id sigradi2009_787
id sigradi2009_787
authors Alves, Andressa Schneider; José Luis Farinatti Aymone
year 2009
title A interface gráfica em um software para o encaixe de modelagens no design de vestuário [The graphical interface for a pattern fitting software in garment industry]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This article deals with the issue of pattern fitting and it is divided into two parts. The first part presents a developed software for rectangle fitting (regular items). The second part is intended to evaluate the usability of a garment industry commercial software that performs the pattern fitting for irregular items. From the assessment carried out and based on the initial software presented here, the interface and the features of new software applied to pattern fitting for irregular items will be developed.
keywords Design do Vestuário; Interface; Usabilidade; Packing; Cutting
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
doi https://doi.org/10.52842/conf.acadia.2018.216
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia09_82
id acadia09_82
authors Bitonti, Francis
year 2009
title Computational Tectonics
doi https://doi.org/10.52842/conf.acadia.2009.082
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 82-89
summary The goal of this research is to define a methodology for the construction of complex non-repeating surfaces and structures that rely on the formulation of a singular tectonic mechanism. Computational systems like cellular automata seem to suggest that it might be possible for modular material systems to self-assemble into complex organizations. A single series of modular parts could be capable of producing not only complex behavior, but also, depending on initial conditions, simple periodic behavior. The research outlined in this paper uses simple geometric transformations to produce tectonic computers that can be applied to a variety of building systems. This paper outlines a methodology for encoding and decoding material assemblages as discrete computational systems. Exploiting the combinatorial nature of tectonic systems makes it possible to produce a population of “material algorithms” capable of exhibiting a wide range of behaviors. Encoding assemblages as discrete systems affords the designer the ability to enumerate and search all possible permutations of a tectonic system. In this paper, we will discuss the calculations and computational processes used to encode material assemblages as populations of discrete algorithms.
keywords Fabrication, modular system, structure, enumeration systems, material algorithms
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:52

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
doi https://doi.org/10.52842/conf.ecaade.2011.751
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
wos WOS:000335665500087
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2009_003
id ecaade2009_003
authors Brell-Cokcan, Sigrid; Reis, Martin; Schmiedhofer, Heinz; Braumann, Johannes
year 2009
title Digital Design to Digital Production: Flank Milling with a 7-Axis CNC-Milling Robot and Parametric Design
doi https://doi.org/10.52842/conf.ecaade.2009.323
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 323-330
summary Just recently Flank Milling has opened up new possibilities in detailing large-scale architectural building envelopes. Whereas examples such as the Hungerburgbahn by Zaha Hadid show the application of Flank Milling at the end of the architectural manufacturing process, our research, in contrast, focuses on the implementation of constraints immanent to manufacturing techniques as early architectural design parameters. This process is explored by the help of generative modeling tools, to allow an intuitive design of freeform parametric curves and surfaces while at the same time obeying crucial geometric conditions. In this paper, we will focus on the “digital design to digital production” process on a 7-axis industrial CNC -robot.
wos WOS:000334282200039
keywords CNC milling technologies, robot-milling, parametric design, freeform surface, digital architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2009_913
id sigradi2009_913
authors Bruno, Fernando Batista; José Luis Farinatti Aymone; Fábio Gonçalves Teixeira; Tânia Luisa Koltermann da Silva
year 2009
title Programa de modelagem 3D em VRML para web [VRML 3D modeling software for Web]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This work describes a software which is a VRML (Virtual Reality Modeling Language) modeler based on Web and a learning object for this language. The modeler, developed using PHP, HTML and JavaScript, runs directly on a website and it is able to show the model and its VRML code during the creation process, and to record it on the user machine. The software developed is able to model primitive forms, as box, cylinder and sphere, and faceset surfaces, helping users to model 3D objects and to understand VRML syntax. The model material is chosen according to color and transparency.
keywords Web; VRML; 3D Modeling; Virtual Reality
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2009_968
id sigradi2009_968
authors Figueiredo, Bruno Acácio Ferreira; José P. Duarte
year 2009
title Making customized tree-like structures: Integrating algorithmic design with digital fabrication
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The ultimate goal of this paper is to contribute for the discussion on the role of digital technologies in architecture, focusing on the convergence of generative design systems with digital fabrication processes for expanding design capabilities. It presents a generative design system of customized tree-like structures for supporting irregular roof surfaces, as an alternative to conventional architectural design processes. It discusses the introduction of an algorithmic and parametric approach to design problems as a methodology for promoting design experimentation and enabling the fabrication of complex design configurations.
keywords Generative Design System; Parametric Design; Digital Fabrication; CAD/CAM; AutoLISP
series SIGRADI
email
last changed 2016/03/10 09:51

_id caadria2009_046
id caadria2009_046
authors Haeusler, Matthias Hank
year 2009
title Modulations of Voxel Surfaces Through Emotional Expressions to Generate A Feedback Loop Between Private Mood and Public Image
doi https://doi.org/10.52842/conf.caadria.2009.173
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 173-182
summary My proposal is an investigation into the perceptual boundaries between human and architectural expression. It asks how architecture can creatively adopt human expression by using the emotions ‘displayed’ on the ‘surface face’ as a generator for displaying a surface on a voxel façade to achieve a cross-connecting perceptual change with modulations through emotion (Massumi, 2006). Through voxel facades the public with their expressed emotions will be included in the decision process of defining space, by expressing our innermost feelings through an architectural medium. Thus emotions of the individual have a platform and can be conveyed indirectly to the public, and in turn open up discussions about the state of the community through the state of the façade. An alliance of media and place in an urban context can be achieved and created, with the participation of its inhabitants, along with a new perception of how media and architecture can together shape and inform spatial relations for a feedback loop between private mood and public image.
keywords Voxel façade; simulation; human-environment interaction; dynamic space
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2009_113
id ecaade2009_113
authors Henriques, Gonçalo Castro; Duarte, José Pinto; Brito, António Carvalho
year 2009
title TetraScript: Development of an Integrated System Capable of Optimizing Light in a Circumscribed Space
doi https://doi.org/10.52842/conf.ecaade.2009.031
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 31-38
summary The purpose of this research is to develop a process capable of optimizing the capture of light in a circumscribed space, using a responsive system of skylights. Research is focused on the design of irregular dome-like pavilion spaces circumscribed by curved surfaces, but the envisioned process might be applied to other functional, formal, and spatial typologies. The design of the pavilion starts with the generation of a surface, later tessellated into a matrix of skylights depending on the geographic location and sun orientation. In the constructed pavilion, the skylights react to the variation of daylight intensity during the day to satisfy specified internal lighting needs. Simultaneously, the integration of conception and fabrication using digital tools (CAD-CAM) facilitates the construction of a non-standard, parametric geometry, thereby diminishing the costs of production and allowing for personalization, while assuring global sustainability.
wos WOS:000334282200002
keywords Scripting, digital fabrication, automation, responsive system
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2009_278
id caadria2009_278
authors Lostritto, Carl
year 2009
title Scripting Animation
doi https://doi.org/10.52842/conf.caadria.2009.747
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 747-754
summary Relationships are amplified and collapsed together as animate surfaces in the formal and spatial manifestation of design parameters. Animation is demonstrated as a medium to express topologies, as each frame is the resultant of a programmed serious of computations, the result of which varies with a parameter: effectively, time. Related conditions are parameterized through the design of algorithms as a means of direct translation into animation. Interrelated forces and limits can conversely congeal into statics with animate qualities. Process and product merge to create a language of phenomenological effects and patterns. While animation is exploited to represent parametric relationships there is a maintained awareness of time and space. The systemization and codification of design “problems” simultaneously facilitates functional, solution-driven architecture. The output is characterized by complex, performative, and specific solutions uniquely relevant to emerging models for fabrication and construction. Usage requirements and site conditions carry the weight of information-based contexts and experience-based symbols as fuel for the inherently cyclical process.
keywords algorithm: animation; scripting; computation; aesthetics
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia09_75
id acadia09_75
authors Ottevaere, Olivier; Hanna, Sean
year 2009
title Quasi-Projection: Aperiodic Concrete Formwork for Perceived Surface Complexity
doi https://doi.org/10.52842/conf.acadia.2009.075
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 75-81
summary Aperiodic tiling patterns result in endlessly varied local configurations of a limited set of basic polygons, and as such may be used to economically produce non-repeating, complex forms from a minimal set of modular elements. Several well-known tilings, such as by Penrose (2D) and Danzer (3D), have been used in architecture, but these are only two examples of an infinite set of possible tilings that can be generated by the projection in two or three dimensions of high-dimensional grids subject to rotations. This paper proposes an interface that enables the user to parametrically search for such tilings. Assembly rules are explained by which arbitrary geometry as specified by NURBS surfaces may be based on the pattern to form a non-repeating complex surface. As an example, the fabrication in concrete of a cylindrical tiling is used to demonstrate the mass production of a continuous, free-flowing structure with the aid of a minimum amount of formwork.
keywords Quasicrystals, aperiodic tiling, strip projection method, assembly rules, tangential continuity, formwork, modularity
series ACADIA
type Normal paper
email
last changed 2022/06/07 08:00

_id caadria2009_091
id caadria2009_091
authors Pitts, Greg; Sambit Data
year 2009
title Parametric Modelling of Architectural Surfaces
doi https://doi.org/10.52842/conf.caadria.2009.635
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 635-644
summary Parametric modelling is gaining in popularity as both a fabrication and design tool, but its application in the architectural design industry has not been widely explored. Parametric modelling has the ability to generate complex forms with intuitively reactive components, allowing designers to express and fabricate structures previously too laborious and geometrically complex to realise. This allows designers to address a project at both the macro and micro levels of resolution in the governing control surface and the individual repetitive component. This two level modelling control, of component and overall surface, can allow designers to explore new types of form generation subject to parametric constraints. Shading screens have been selected as the focus for this paper and are used as a medium to explore form generation within a given set of functional parameters. Screens can have many applications in a building but for the purpose of the following case studies, lighting quality and passive sun control are the main functional requirement. A set of screen components have been designed within certain shading parameters to create a generic component that can automatically adapt to any given climatic conditions. These will then be applied to surfaces of varying degrees of geometric complexity to be analysed in their ability to correctly tessellate and create a unified screening array true to the lighting requirements placed on the generic component.
keywords Parametric Modelling: Screening; Design; Fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2009_016
id ecaade2009_016
authors Sprecher, Aaron; Kalnitz, Paul
year 2009
title From Formal to Behavioral Architecture: Few Notes on the Abstraction of Function
doi https://doi.org/10.52842/conf.ecaade.2009.161
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 161-166
summary With the advent of information theories, contemporary architecture is approached in terms of the energetic formations of memorization, association and connection. The former architectural diagram becomes a concretization, an instance, one possibility, of an operational code. Memorization refers to the ability of architecture to embed information within the deepest composition of matter. Architectural performance has always been revealed by the integration, or association, of multiple parameters. Connections are vectors which fuse the knowledge of heterogeneous symbiotic human environments. In the “C-chair”, a project by our laboratory Open Source Architecture, abstract objects such as points, lines, and surfaces act as memorizers of information. As the codified system reacts to external forces, an association of two distinct graph structures is developed and connections are formed as the architectural object emerges.
wos WOS:000334282200019
keywords Computational algorithm, information theory, computing design, energetic architecture, behavioral system
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2009_911
id sigradi2009_911
authors Teixeira, Fábio Gonçalves; Sérgio Leandro dos Santos
year 2009
title VirtusCADE, um Sistema para o Design Virtual de Produtos [VirtusCADE, A system for virtual design of products]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The knowledge of latest technology that allows the development of competitive products in reduced times is crucial to guarantee a sustainable growth of the national industry. This work presents the development of a computational system for the Virtual Design of products, the VirtusCADE, which is a CAD/CAE interactive software (Computer Aided Design/Computer Aided Engineering). The VirtusCADE includes 3D geometric modeling of surfaces and solids and mesh generation. The system uses the parametric modeling of surfaces, including algorithms for determination of intersection between surfaces and for triangular mesh generation in trimmed parametric surfaces. The graphical interface is interactive and allows the direct real time manipulation of objects (lines, surfaces and solids) in 3D using the OpenGL technology. The system prioritizes the usability, implementing several graphic tools that facilitate the manipulation in 3D. The VirtusCADE contemplates the structural simulation through the Finite Element Method. The code architecture is based on oriented object programming, which allows great scaling capability for the implementation of new tools. This project has great applicability in numerical simulation of physical phenomena, such structural analysis of buildings, vehicles parts, with impact in the industries of civil construction, metal-mechanics, aerospatial, naval and automotive.
keywords Virtual Design; Geometric modeling; Finite elements
series SIGRADI
email
last changed 2016/03/10 10:01

_id caadria2009_144
id caadria2009_144
authors Tsung-Hsien Wang
year 2009
title Procedural Reconstruction of NURBS Surfaces
doi https://doi.org/10.52842/conf.caadria.2009.597
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 597-606
summary A potential way to bridge the gap between complex form generation and models for physical manifestations is to panelize NURBS surfaces with polygonal faces. This paper investigates the transition from NURBS surface to a mesh solid through a procedural modeling approach, in the process, illustrating how a discretized planar surface can be reconstructed for form generation and further exploration. The paper promotes this approach as an efficient way to modeling complex forms using an example drawn from real life architecture to demonstrate a generative process with customized restructuring.
keywords Rule-based; surface reconstruction; procedural modelling; architectural exploration
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2009_110
id ecaade2009_110
authors van der Maas, David; Meagher, Mark; Abegg, Christian; Huang, Jeffrey
year 2009
title Thermochromic Information Surfaces: Interactive Visualization for Architectural Environments
doi https://doi.org/10.52842/conf.ecaade.2009.491
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 491-496
summary In this paper we describe a series of nine prototypes that were constructed to explore the benefits and limitations of thermochromic ink as a material for the design of architectural information surfaces. Among the goals of the project were the identification of inexpensive fabrication methods that could be used to build thermochromic surfaces at the scale of a room. Our primary design concerns were the ability to communicate information about indoor climate, and the integration of the information surfaces in an architectural environment. We propose a method for building thermochromic surfaces based on printed circuit boards (PCB) that is cost-effective, highly precise, and allows the fabrication of large surfaces through tiling.
wos WOS:000334282200059
keywords Thermochromic display, interactive architecture, information visualization, fabrication process, communication
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_508
id ecaadesigradi2019_508
authors Yenice, Yagmur and Park, Daekwon
year 2019
title V-INCA - Designing a smart geometric configuration for dry masonry wall
doi https://doi.org/10.52842/conf.ecaade.2019.2.515
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 515-520
summary Soil is still used as a building material in many parts of the world, especially in rural areas. Approximately 30% of the world's population is still living in shelters made by soil (Berge 2009). One of the techniques is using soil in mudbrick form, which is sun dried instead of being fired in kilns. However, mud bricks have low compressive and tensile strength. Instead of enhancing the mix formula, we focus on designing the geometry of the brick itself to improve walls' overall compressive and tensile strength. The goal of the research is to explore an innovative way to build masonry walls through geometrical examination together with computer aided design. Unlike traditional horizontal laying of the rectangular brick elements, 3D designed blocks take advantage of gravity and foster an accelerated assembly without mortar. They create a balance point in the middle of the wall during the construction. The geometry of V-INCA blocks allows dry construction which will reduce the amount of time spent on the site. Load distribution and the friction between two surfaces are sufficient to have a dry construction. Thus, a wall built with V-INCA is stronger intrinsically due to its geometry.
keywords Dry masonry construction; smart geometrical design; on-site material; compressed earth blocks; Inca masonry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ascaad2009_mohamed_abdalla
id ascaad2009_mohamed_abdalla
authors Abdalla, Mohamed Saad Atia
year 2009
title 3D Model and Decision Support System for Fire Safety: A case study of Kingdom of Bahrain
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 419-430
summary Fire agencies on all levels try hard to save lives, properties, and natural resources. Accurate access to critical information is essential in this regard, many agencies around the world have embraced GIS as a tool that helps them balance needs, uses, and hazards to promote sustainability of the environment while identifying and limiting vulnerability. At Kingdom of Bahrain, Ministry of interior established the Geographic Security System (GSS) to enhance the emergency response. The 3D of the GSS Consisted of 3 main parts: (1) 3D for terrain model, (2) 3D model for entire targeted zones, and (3) 3D models for individual buildings. In this paper, the integration between GSS system and 3D model will be illustrated, and how this kind of integration could enhance decision support system (DSS) for fire safety at kingdom of Bahrain. On other hand, we will highlight the technical and legislation difficulties faced in this project. Also, the future steps to enhance DSS will be discussed.
series ASCAAD
email
last changed 2009/06/30 08:12

_id caadria2009_031
id caadria2009_031
authors Abdelhameed, Wael
year 2009
title Cognition Model in Conceptual Designing
doi https://doi.org/10.52842/conf.caadria.2009.771
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 771-780
summary Both design researchers and cognitive scientists have developed various process models to study human creative behaviour in design. The models developed are often based on observations of design processes and analysis of design protocols. This research paper reports the-stateof- the-art in the area of cognition models that present design activities in conceptual designing. The research paper investigates the approaches of these cognition models. A new approach of a cognition activity model in conceptual designing is proposed. The new approach used in the introduced model takes into the account factors and activities that are related to the external environment of design (design medium). The external environment has an important role in the cognition activities and the evaluation process in a way that can hardly be ignored or neglected. The presented model of cognition activities in conceptual designing highlights two main factors employed in all the iteration loops of the model, namely: media use and representation. Case studies of architecture students’ designs have been analyzed. The analysis of these case studies helped in forming the proposed model. Various results have been concluded and reported.
keywords Cognition model; conceptual designing; design process; design theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2009_410
id cf2009_410
authors Abdelhameed, Wael
year 2009
title Reciprocal relationship of conceptualization and design problem definition: A proposed approach for an architectural design studio
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 410-422
summary This research paper proposes an approach to be applied in the design studio. The proposed approach highlights the reciprocal relationship between concept articulation and design problem definition in a design method that exposes different design activities related to this relationship. The design method was applied in a design studio of an intermediate level. The study reports the analysis of student designs in terms of the deign method employed. Moreover, a survey was carried out in order to measure the responses of students and instructors regarding the design method and its approach. The main structure of the design method proposed can be described as follows: although the relationship of concept articulation and design-problem definition are reciprocal, the influence of one direction can be distinguished more than of the other direction on different design activities. The research using qualitative and quantitative methodologies analyzes the results and outputs of the theoretical investigations, the practical application in the design studio, and the questionnaire responses through different methodological tools.
keywords Conceptual design, design method, architectural design studio
series CAAD Futures
email
last changed 2009/06/08 20:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_600438 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002