CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 594

_id acadia09_167
id acadia09_167
authors Flohr, Julie
year 2009
title Digital Templates: Diagrams of Associations
doi https://doi.org/10.52842/conf.acadia.2009.167
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 167-173
summary This paper claims that a speculative design space exists within the crafting of digital rule-based associations in parametric modeling environments, which promises to support potent contemporary designs in architecture. In addition to reviewing some diagrammatic frameworks located within the techniques of associative design modeling, this paper also details a project for a research-oriented practice based on the development of a registry of digital diagrams called “re-usables.” Working with “re-usable templates” of association, a precise sequence of design logic is invented for each project, while some of its aspects are re-used and re-configured. Such practice aims to operate between the “one-off” world of the all-custom and the entirely reproducible world of “copy-paste.”
keywords Parametric Design, Associative design, design logic, abstraction
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:51

_id acadia09_26
id acadia09_26
authors Strehlke, Kai
year 2009
title Digital Technologies, Methods, and Tools in Support of the Architectural Development at Herzog & de Meuron
doi https://doi.org/10.52842/conf.acadia.2009.026
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 26-29
summary The architectural office of Herzog & de Meuron (HdM) started in 1978 and has grown to a company of about 330 employees. Besides the two founding partners who participate in every project there are nine additional partners who take responsibility for individual projects. Furthermore, the office collaborates with artists and outside experts of various fields to support and enhance the available knowledge and skills. The partners ensure that each project has a distinct and unique identity and is well adapted to its environment. This emphasis on the uniqueness of a project characterizes the design philosophy of HdM.The growth of the office and the size and complexity of the projects has demanded continuous adaptation of the office structure. The amount of required data is increasing exponentially, while the design cycles are, generally, becoming shorter. The challenge is to find the right tools and media. HdM does not restrict itself to the realm of digital tools but, rather, uses all possible media: hand sketches in pencil, together with diagrams, drawings, and images, as well as physical and digital models.
keywords Parametric design, fabrication, prototype, collaboration
series ACADIA
type Keynote paper
email
last changed 2022/06/07 07:56

_id acadia09_267
id acadia09_267
authors Christenson, Mike
year 2009
title On the Use of Occlusion Maps to Examine Additions to Existing Buildings
doi https://doi.org/10.52842/conf.acadia.2009.267
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 267-269
summary This paper discusses occlusion maps, or diagrams of isovists deployed in a plan field, which graphically describe an inhabitant’s position-dependent perception of a building’s visual permeability. Occlusion maps are shown here to be an important tool for analyzing the effect that additions to existing buildings have on this perception. The question is critical because additions invariably affect the visual permeability of their host buildings.
series ACADIA
type Short paper
email
last changed 2022/06/07 07:56

_id sigradi2009_951
id sigradi2009_951
authors Sá, Daniele Nunes Caetano de
year 2009
title Os Processos Projetuais na Arquitetura de Peter Eisenman [The Processes in the Architecture of Peter Eisenman]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary In the dialectic formal Eisenman, the procedures for projecting initially start from the consideration of architectural form as a transformation of a solid geometric pre-existing. Subsequently, the form is timeless, decomposed into spatial entities, non-specific, requiring the intellectualization of the process as an alternative to emotion perception. From the eighties, mediated by computer resources, self-referentiality is the keynote of the representational process and architectural experience. The search houses poetic diagrams as procedures for projecting computer, tangent now the concept of trail’ Derrida responsible for the intelligibility and readability of architecture, sometimes grotesque, or a rationale that contains the irrational.
keywords Eisenman; representação; auto-referencialidade; diagramas
series SIGRADI
email
last changed 2016/03/10 10:01

_id ascaad2009_mai_abdelsalam
id ascaad2009_mai_abdelsalam
authors Abdelsalam, Mai
year 2009
title The Use of the Smart Geometry through Various Design Processes: Using the programming platform (parametric features) and generative components
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 297-304
summary The emergence of parametric generative design tools and prototyping manufacturing technology led to radical changes in architectural morphologies. This change increased the opportunity to develop innovative smart geometries. Integrating these algorithms in the parametric softwares led to variations in building design concepts increasing alternatives and decreasing the repetitive work previously needed in conventional CAD software. The chosen software in this research is Generative Components (GC). It is a software design tool for an associative and parametric design platform. It is tested for using Global Variables with associative functions during the concept creation and form GC comprises features. The results presented in this research may be considered an introduction to the smart geometry revolution. It deals with the generative design which applied in the design process from conceptual design phase, defining the problem, exploring design solutions, then how to develop the design phases. Office building is a building type which encourages new forms that needs computational processes to deal with repetitive functions and modular spaces and enclosed in a flexible creative structural skin. Generative design helps the office buildings to be arranged, analysed, and optimized using parameters in early stages in design process. By the end of the research, the use of the smart geometry in a high rise office building is defined and explained. The research is divided into three parts, first a summary of the basic theories of office buildings design and the sustainable requirements that affect it, and should be integrated. Secondly, the previous experiences in generating office buildings by Norman foster and Sergio Araya. At last, a case study is proposed to test and evaluate the use of the parametric generative methodology in designing an office building with specific emphasis on the function, environmental aspects and form generation using Generative Components (GC) Software.
series ASCAAD
email
last changed 2009/06/30 08:12

_id sigradi2009_957
id sigradi2009_957
authors Baerlecken, Daniel Michael; Gernot Riether
year 2009
title From texture to volume: an investigation in quasi-crystalline systems
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The relation between texture, pattern and massing is a fundamental question in architecture. Classical architecture, as Leon Battista Alberti states in “De re aedificatoria” (Book VI, Chapter 2), is developed through massing and structure first; texture is added afterwards to give the bold massing and structure beauty. Only the ornamentation adds pulcritudo to the raw structure and massing. Rather than starting with a volume and applying texture afterwards, the Digital Girih project started with textural operations that informed the overall volume later. The stereometric, top-down methodology is questioned through the bottom-up methodology of the Girih project. Girih lines of traditional Islamic patterns were used as a starting point. The aspect of 3-dimensionality was developed analogue as well as digital, using the deformability of different materials at various scales and digital construction techniques as parameters. The flexibility within the Girih rules allowed the system to adapt to different tasks and situations and to react to different conditions between 2- and 3- dimensionality. The project in that way explored a bottom-up process of form generation. This paper will describe the process of the project and explain the necessity of digital tools, such as Grasshopper and Rhino, and fabrication tools, such as laser cutter and CNC fabrication technology, that were essential for this process.
keywords Generative Design; Parametric Design; Tessellation; Form Finding; Scripting
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2009_137
id caadria2009_137
authors Baerlecken, Daniel; Judith Reitz
year 2009
title Combinatorial Productivity
doi https://doi.org/10.52842/conf.caadria.2009.761
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 761-770
summary The paper investigates knotting techniques as a method for generating wall systems. The essential matter of the paper is to demonstrate the potential of knotted, algorithmic architecture through different research studies, which share the knotting of linear elements as a common methodology for design development. Combinatorial Productivity implies that by combining linear elements hidden properties of a system emerge and thereby the system becomes productive.
keywords Generative Design; Design methodology; Parametric Form Generation; Knot Theory; Scripting
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia09_226
id acadia09_226
authors Benton, Sarah
year 2009
title reForming: Responding to Our Land in Crisis
doi https://doi.org/10.52842/conf.acadia.2009.226
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 226-233
summary An environmental crisis in Australia in early 2009 prompted the architectural design work considered in this paper. Bushfires ravaged the Victorian hinterland, destroying lives and families. The crises inspired me to explore the ACADIA 2009 conference theme, reForm(): how technologies transform the ways in which buildings and spaces perform, act and operate. This paper explores architectural design in distressed contexts and some design technologies used to formalize new housing development and respond to the environmental crisis.
keywords Parametric design, environment, design logic, landscape, biomimicry
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:54

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
doi https://doi.org/10.52842/conf.ecaade.2011.751
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
wos WOS:000335665500087
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id 96d8
id 96d8
authors Booth, Peter; Loo, Stephen
year 2009
title Beyond Equilibrium: Sustainable Digital Design
source Sustainable theory/ theorizing sustainability Proceedings from the 5th International Conference of the Association of Architecture Victoria University, New Zealand, 4-5 September 2009
summary Implicit in current understandings of sustainability is the presence of a closed system with the capacity of equilibration. Sustainable practices, including design practices, are therefore assumed to possess a redemptive role: design is deployed (as environmentally sustainable design, etc.) to change habits, develop new technologies and recover marginalized practices in the hope of righting the balance between the environment and human endeavours.

Recent developments in experimental digital design have demonstrated non‐linear and highly complex relations between topological transformations, material change, and the temporal dimension of forces. More importantly, this method of design is bottom‐up, because it does not rely on design solutions presaged by conventions, or restricted by representation, but is emergent within the performance of computational design itself. We argue that digital design processes need to move beyond the flux of determinates and solutions in equilibrium, towards a radically continuous but consistent production, which is in effect, an expression of sustainable pedagogy.

The role of emergent digital techniques has significant impact on the methods in which computation is utilized within both practice and academic environments. This paper outlines a digital design studio on sustainability at the University of Tasmania, Australia that uses parametric modelling, digital performance testing, and topological morphology, concomitant with actual material fabrication, as a potent mode of collaborative design studio practice towards a sustainable design pedagogy.

keywords digital, computation, process, morphogenesis.
series other
type normal paper
email
last changed 2009/09/08 23:21

_id ecaade2009_003
id ecaade2009_003
authors Brell-Cokcan, Sigrid; Reis, Martin; Schmiedhofer, Heinz; Braumann, Johannes
year 2009
title Digital Design to Digital Production: Flank Milling with a 7-Axis CNC-Milling Robot and Parametric Design
doi https://doi.org/10.52842/conf.ecaade.2009.323
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 323-330
wos WOS:000334282200039
summary Just recently Flank Milling has opened up new possibilities in detailing large-scale architectural building envelopes. Whereas examples such as the Hungerburgbahn by Zaha Hadid show the application of Flank Milling at the end of the architectural manufacturing process, our research, in contrast, focuses on the implementation of constraints immanent to manufacturing techniques as early architectural design parameters. This process is explored by the help of generative modeling tools, to allow an intuitive design of freeform parametric curves and surfaces while at the same time obeying crucial geometric conditions. In this paper, we will focus on the “digital design to digital production” process on a 7-axis industrial CNC -robot.
keywords CNC milling technologies, robot-milling, parametric design, freeform surface, digital architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2009_1100
id sigradi2009_1100
authors Celento, David
year 2009
title Digital Craft Meets the Ancient Art of Ceramics: Would the Bauhaus Approve?
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The Bauhaus was founded upon the controversial premise that emergent mechanical processes offered new and creative ways to explore materials. Today, we encounter equally tendentious scenarios where the designer often appears one step further removed—automated CNC machines are driven by computational machines. Like the early activities of the Bauhaus some view digital pursuits with suspicion; however, digital design/fabrication is the “Nächster Bauhaus Bewegun” offering opportunities for design innovation equal in significance to that of the Bauhaus. This paper partially examines the theoretical implications of digital design/fabrication, then presents a collaboration between an architect and artist re-examining the architectural cladding possibilities using digital tools to shape one of mankind’s most venerable materials—ceramics.
keywords Ceramics in architecture, mass customization, digital fabrication, parametric design
series SIGRADI
email
last changed 2016/03/10 09:48

_id 506b
id 506b
authors Christenson, Mike
year 2009
title Testing the relevance of parameterization to architectural epistemology
source Architectural Science Review, Volume 52.2: 135-141
summary Advances in building information modeling (BIM) deeply impact the production of new architecture; its benefits are obvious and its acceptance widespread. But how does BIM impact the study of existing architecture? Can BIM be assumed to operate as a neutral framework, equally applicable to the study of architecture anywhere? Using as a point of departure a recent outline of the conceptual structure of parametric modeling prepared by Sacks, Eastman, and Lee (2004), this paper compares parametric models of two existing works of architecture: Mies van der Rohe’s Crown Hall and Peter Zumthor’s St. Benedict Chapel. The processes of parametrically modeling each building are specifically compared in two ways: first, parameters are established for each model; second, each model is "flexed" as a means of disclosing possible semantic relationships within each work of architecture. Because each building demands a different parameter-establishment strategy, and because the models permit different degrees of flexibility, the comparison illustrates the shortcomings of a "neutral framework" assumption to an architectural epistemology.
keywords Existing architecture, Parametric modeling, Representation
series journal paper
type normal paper
email
more http://www.earthscanjournals.com/asre/052/asre0520135.htm
last changed 2009/06/18 14:24

_id ecaade2022_367
id ecaade2022_367
authors Doumpioti, Christina and Huang, Jeffrey
year 2022
title Field Condition - Environmental sensibility of spatial configurations with the use of machine intelligence
doi https://doi.org/10.52842/conf.ecaade.2022.2.067
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 67–74
summary Within computational environmental design (CED), different Machine Learning (ML) models are gaining ground. They aim for time efficiency by automating simulation and speeding up environmental performance feedback. This study suggests an approach that enhances not the optimization but the generative aspect of environmentally driven ML processes in architectural design. We follow Stan Allen's (2009) idea of 'field conditions' as a bottom-up phenomenon according to which form and space emerge from local invisible and dynamic connections. By employing parametric modeling, environmental analysis data, and conditional Generative Adversarial Networks [cGAN] we introduce a generative approach in design that reverses the typical design process of going from formal interpretation to analysis and encourages the emergence of spatial configurations with embedded environmental intelligence. We call it Intensive-driven Environmental Design Computation [IEDC], and we employ it in a case study on a residential building typology encountered in the Mediterranean. The paper describes the process, emphasizing dataset preparation as the stage where the logic of field conditions is established. The proposed research differentiates from cGAN models that offer automatic environmental performance predictions to one that spatial predictions stem from dynamic fields.
keywords Field Architecture, Environmental Design, Generative Design, Machine Learning, Residential Typologies
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2020_9
id sigradi2020_9
authors Felipe, Bárbara L.; Nome, Carlos
year 2020
title Digital Fabrication Techniques: A systematic literature review
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 9-16
summary The materialization of architectural forms uses new processes aided by digital manufacturing techniques (FD). Five FD techniques stand out: sectioning (serial planes), tessellation, folding, contouring, and forming. This article's objective is to characterize the state of the art of these techniques, from 2009 to 2020 in national and international research bases. The Systematic Literature Review is used from three stages and nine protocol phases. The results indicate the techniques, methods, computer simulations, and applicability in more recurrent materials.
keywords Digital Fabrication techniques, Digital Fabrication, Algorithmic Architecture; Parametric Design.
series SIGraDi
email
last changed 2021/07/16 11:48

_id sigradi2009_968
id sigradi2009_968
authors Figueiredo, Bruno Acácio Ferreira; José P. Duarte
year 2009
title Making customized tree-like structures: Integrating algorithmic design with digital fabrication
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The ultimate goal of this paper is to contribute for the discussion on the role of digital technologies in architecture, focusing on the convergence of generative design systems with digital fabrication processes for expanding design capabilities. It presents a generative design system of customized tree-like structures for supporting irregular roof surfaces, as an alternative to conventional architectural design processes. It discusses the introduction of an algorithmic and parametric approach to design problems as a methodology for promoting design experimentation and enabling the fabrication of complex design configurations.
keywords Generative Design System; Parametric Design; Digital Fabrication; CAD/CAM; AutoLISP
series SIGRADI
email
last changed 2016/03/10 09:51

_id sigradi2009_792
id sigradi2009_792
authors Flório, Wilson
year 2009
title Modelagem Paramétrica em Arquitetura: Estratégias para Materializar Formas Complexas [Parametric Modeling in Architecture:strategies to materializing complex shapes]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This research investigates the relation between parametric modeling (PM) and digital fabrication (DF) of complex shapes in architecture. The complexity involving the recent designs in architecture has demanded new procedures, as much during the conception as to make possible its construction. Thus, the PM and the DF have allowed architects and engineers conceiving, detailing and constructing complex structures with more precision and faster. In this paper, the author contributes for a discussion in this field, still incipient in Brazil, particularly in the process of PM teach-learning.
keywords Parametric Modeling; Digital Fabrication; Construction; Contemporary Architecture; Complexity
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia09_291
id acadia09_291
authors Hemsath, Timothy L.; McCracken, Brian; Russell, Darin
year 2009
title Decon Recon: Parametric CADCAM Deconstruction Research
doi https://doi.org/10.52842/conf.acadia.2009.291
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 291-293
summary The deconstruction (DeCon) and repurposing (ReCon) of existing structures and materials are worthwhile and relevant endeavors given the potential for such procedures to be more economically and environmentally sustainable than conventional construction methods. Conventional construction methods often utilize virgin materials for the production of architecture, requiring extensive energy to harvest, process, and manufacture the materials for use. Today, we must face the fact that we exist in a carbon-sensitive economy, and demand design approaches that reduce architecture’s impact on the environment. Our goal was to develop a CADCAM ReCon design methodology that would have the potential to mitigate carbon consumption. To explore this goal, students engaged a design research project that looked for novel and innovative approaches to the DeCon and ReCon of an existing barn. The student researchers created parametric models and surface designs derived from the existing materials. The digitally fabricated tectonic design constructions resulted in economical, novel, and material-efficient design methodologies for DeCon and ReCon.
keywords Fabrication, environment, CADCAM, Parametric Design
series ACADIA
type Short paper
email
last changed 2022/06/07 07:49

_id ascaad2009_marek_hnizda
id ascaad2009_marek_hnizda
authors Hnizda, Marek
year 2009
title Systems-Thinking: Formalization of parametric process
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 215-223
summary This paper details a design process focused on explicit digital parametric modeling as an integral system-outcome design. This investigation isolates and alters a simple geometric form (cylinder) in a constructed architectural design method. Systems are defined as logical, sequential operations inherent to the resultant effects. These operations within each system are composed of various parameters, singular entities containing or referencing data. Given specific data, operations are preformed culminating with corresponding outcomes. The two main components of this research pertain to object extraction and transformation. A single grain silo (cylinder), as the architectural/geometric object under examination, is tested using a system of varied parameters inputted into the program Grasshopper, an “explicit history” graphic plug-in for Rhinoceros. This application is utilized to digitally manipulate parameters as objects in a nodal arrangement. Throughout the operations execution, this isolated silo will be transformed into a multitude of versions, then regrouped into the original cluster of silos to expose the implications from patterning, adjacency, and repetition given the proximity of the each silo and its new parametric characteristics. As the various parameters in specific operations affect the system as a whole, so is each adjacent silo in proximity given the same or similar operation? This then is translated and reflected in the outcome. This research seeks to explore design process by applying constant digital 3-D reductive geometric, modular forms inviting systems thinking in parametric environments that can lead to architectural design implications. By focusing on the technical aspect of the parameterization and valuing functionality rather then style, the process becomes focused on formal qualities as the system-outcome relationships. This research tests the “aesthetic implications” of a varied mode of digital design, namely the investigation of an architectural process utilizing parametric design.
series ASCAAD
email
last changed 2009/06/30 08:12

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_784 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002