CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 594

_id caadria2009_145
id caadria2009_145
authors Oesterle, Silvan
year 2009
title Performance As A Design Driver in Robotic Timber Construction
doi https://doi.org/10.52842/conf.caadria.2009.663
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 663-671
summary In the research project presented in this paper we investigate the architectonic and constructive potential of additive digital fabrication in timber construction through robotic processes as well as the relation of functional requirements of an exterior wooden wall to design. Form finding through performance analysis is of great interest for architects. With advanced digital fabrication technologies at hand it is possible to produce articulate building elements. This can be exploited to analyze and transform performance criteria into architectural expression. We argue that functional requirements and formal characteristics are interdependent. To allow performance criteria drive the generative parameters of design, custom software tools need to be developed which impart physical aspects of building elements to digital design models.
keywords Digital fabrication: design performance; robotic construction; timber wall
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia09_194
id acadia09_194
authors Oesterle, Silvan
year 2009
title Cultural Performance in Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2009.194
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 194-200
summary In the research presented in this paper, we investigate the architectonic potential of additive digital fabrication in timber construction through robotic processes. The goal of the project was to learn from traditional building techniques and to translate the cultural knowledge about performance requirements such as constructive weather protection and structure for today’s tools and digital design systems.
keywords Robot, fabrication, prototype, history, parametric design, wood
series ACADIA
type Normal paper
email
last changed 2022/06/07 08:00

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia17_102
id acadia17_102
authors Aparicio, German
year 2017
title Data-Insight-Driven Project Delivery: Approach to Accelerated Project Delivery Using Data Analytics, Data Mining and Data Visualization
doi https://doi.org/10.52842/conf.acadia.2017.102
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 102-109
summary Today, 98% of megaprojects face cost overruns or delays. The average cost increase is 80% and the average slippage is 20 months behind schedule (McKinsey 2015). It is becoming increasingly challenging to efficiently support the scale, complexity and ambition of these projects. Simultaneously, project data is being captured at growing rates. We continue to capture more data on a project than ever before. Total data captured back in 2009 in the construction industry reached over 51 petabytes, or 51 million gigabytes (Mckinsey 2016). It is becoming increasingly necessary to develop new ways to leverage our project data to better manage the complexity on our projects and allow the many stakeholders to make better more informed decisions. This paper focuses on utilizing advances in data mining, data analytics and data visualization as means to extract project information from massive datasets in a timely fashion to assist in making key informed decisions for project delivery. As part of this paper, we present an innovative new use of these technologies as applied to a large-scale infrastructural megaproject, to deliver a set of over 4,000 construction documents in a six-month period that has the potential to dramatically transform our industry and the way we deliver projects in the future. This paper describes a framework used to measure production performance as part of any project’s set of project controls for accelerated project delivery.
keywords design methods; information processing; data mining; big data; data visualization
series ACADIA
email
last changed 2022/06/07 07:55

_id cf2009_037
id cf2009_037
authors Forgues, Daniel; Eugenie, Yoann
year 2009
title Un « collaboratoire » comme nouveau contexte pour la transformation des pratiques via la technologie; A "collaboratory" as a new context for transforming practices through technology
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 37-50
summary Building design is today a major social, economic and environmental challenge. Design is also a source of innovation and an important economic driving force that requires the collaboration of professionals from various fields of expertise. But the traditional linear approach in design has shown its limits, and it often leads to non optimal design solutions and buildings with inadequate performances. This paper aims to validate a computer supported collaborative workspace that facilitates the participation, in an integrated approach, of the various members of a construction project team. The goal of the research is to be part of the evolution of work practices in design.
keywords Integrated design, collaborative workspace, task performance
series CAAD Futures
type normal paper
email
last changed 2009/06/09 07:11

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia09_66
id acadia09_66
authors Menges, Achim
year 2009
title Performative Wood: Integral Computational Design for Timber Constructions
doi https://doi.org/10.52842/conf.acadia.2009.066
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 66-74
summary Wood differs from most building materials in that it is a naturally grown biological tissue. Thus wood displays significant differentiation in its material makeup and structure as compared to most industrially produced, isotropic materials. Upon closer examination wood can be described as an anisotropic natural fiber system with different material characteristics and related behavior in different directions relative to the main grain orientation. Because of its differentiated internal capillary structure wood is also hygroscopic. It absorbs and releases moisture in exchange with the environment and these fluctuations cause differential dimensional changes. In architectural history the inherent heterogeneity of wood and the related more complex material characteristics have been mainly understood as a major deficiency by the related crafts, timber industry, engineers and architects alike. This paper will present an alternative design approach and associated computational design tools that aim at understanding wood’s differentiated material make up as its major capacity rather than a deficiency. Along two design experiments the related research on an integral computational design approach towards unfolding wood’s intrinsic material characteristics and performative capacity will be discussed. The first experiment explores the anisotropic characteristics of wood by exploiting the differential bending behavior in relation to the local induction of forces through which a specific overall morphology can be achieved. The second experiment focuses on the hygroscopic property of wood as the base for developing a surface structure that responds to changes in relative humidity with no need for any additional electronic or mechanical control.
keywords Wood, materiality, prototype, performance, responsive design
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:58

_id sigradi2009_1060
id sigradi2009_1060
authors Ribeiro, Julio Tollendal; Neander Furtado Silva; Ecilamar Maciel Lima
year 2009
title Building Information Modeling" como instrumento de projetos aeroportuários [Building Information Modeling as an instrument for designing airports]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Building Information Modeling may have obvious implications in the process of architectural design and construction at the present stage of technological development. However, BIM has rarely been really assessed and its benefits are often described in generic terms. In this paper we describe an experiment in which such benefits are identified from a comparison between two design processes of the same airport building, one run in a conventional way and the other in a BIM-based approach. The practical advantages of BIM to airport design were remarkable.
keywords Airport Design; BIM; Benefits; Design Performance
series SIGRADI
email
last changed 2016/03/10 09:58

_id cf2009_847
id cf2009_847
authors Rosenberg, Daniel
year 2009
title Designing for the unpredictable: Novel model for the design of emergence through real-world behavior
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 847- 860
summary Most current approaches to unpredictability, within architectural discourse, lie either in the design of unbuildable emergent shapes or in performance simulations to test already designed outcomes. Even though some recent explorations have enabled the construction of emergent shapes, the unpredictability of real-world behaviors as the rules’ source for the unpredictability of shape generation remains unexplored. This paper proposes a novel model for the design of unpredictable buildable shapes, based on real-world behaviors. Initially, current methodologies are studied in order to find how they deal with the unpredictability of shape generation and real-world behaviors. Finally, a comprehensive novel model is proposed and tested through an empirical experiment, to show how it can be applied in architecture.
keywords Unpredictability, emergence, simulation, folding structures
series CAAD Futures
email
last changed 2009/06/08 20:53

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2009_keynote2
id ecaade2009_keynote2
authors Whitehead, Hugh
year 2009
title Social Experiments in Design Technology
doi https://doi.org/10.52842/conf.ecaade.2009.x.f4d
source Computation: The New Realm of Architectural Design [27th eCAADe Conference] Istanbul (Turkey) 16-19 September 2009
summary The delivery of a successful project demands high levels of collaboration across an expanded design team, which now includes consultants, fabricators and contractors as well as architects and engineers. The pace of development in design technology has been very rapid during the last few years and there are now many software products which offer high levels of sophistication. Most provide associative and parametric modelling strategies, which can be further enhanced and extended by the use of scripting languages. Designers are becoming tool-builders while fabricators are becoming digital craftsmen. With the advent of fast efficient drawing extraction the industry is at last making determined steps towards a model-driven process. However there is no integrated platform which supports the free exchange of ideas, combined with the evaluation of performance, experimentation with production techniques and the evolution of project-specific workflows. In education the design schools have been quick to recognise the potential of the new design technology. This has led to a rapid expansion in course curricula that now offer many new specialisations, most of which also need to be under-pinned by a good grounding in descriptive geometry, mathematics and physics. The architect as a generalist, who coordinates the work of specialists, is being challenged by an increasing breadth of technical studies that require more than just a superficial depth of understanding. In practice the gulf is widening even more rapidly. New graduates, who often have spectacular expertise in modelling and fluency in scripting languages, do not yet have the design and construction experience necessary to direct their efforts to best effect. On the other hand people running project teams do not have the technical background to understand the potential of the skills and resources that are available. Today there is no longer the continuity that used to derive from apprenticeship. As we experiment we find that tools based on new ideas and techniques can radically change workflow – but fear of the unknown can provoke resistance. So the problems we face in harnessing the new technology are as much social and cultural as they are technical. The presentation will focus on developing attitudes towards tool-building with the aim of integrating design, analysis and production. This is part of a continual and quite gradual process, which requires the ability to play interpretive roles that help to bring about cultural change. Examples will be shown from the work of the Specialist Modelling Group at Foster+Partners who now have tenyears experience in deploying design technology in an environment where research is intensely project driven.
series eCAADe
type keynote paper
last changed 2022/06/07 07:50

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
doi https://doi.org/10.52842/conf.ecaade.2011.751
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
wos WOS:000335665500087
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2024_293
id sigradi2024_293
authors Medeiros de Souza, Ludmilla and Tavares da Silva, Felipe
year 2024
title Automatic Generation of Reinforced Concrete Structures Formwork Using a Parametric Model
source Herrera, Pablo C., Gómez, Paula, Estevez, Alberto T., Torreblanca-Díaz, David A. Biodigital Intelligent Systems - Proceedings of the XXVIII Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2024) - ISBN 978-9915-9635-2-5, iBAG-UIC Barcelona, Spain, 13-15 November 2024, pp. 1849–1858
summary Although there are currently means to automate formwork design for reinforced concrete structures, it is common to use manual methods or just electronic spreadsheets. This work aims to demonstrate the implementation of a parametric and generative model for timber formwork. A parametric geometric model was developed for a three-dimensional structure of rigid reinforced concrete frames with beams, columns, and solid slabs, with automatic formwork sizing based on ABNT NBR 15696 (2009) and ABNT NBR 7190 (2022). As a result, a geometric model is generated, where the thicknesses are visualized instantly in the CAD system window and updated according to changes in the input data. The parametric model that generates the components of timber formwork can significantly help optimize the structure in the design process. After sizing, the proposed parametric algorithm can be used to find an optimized solution with a reduced formwork rate per built area (m2/m2).
keywords Reinforced concrete formwork, Construction waste, Parametric modeling, Automatic design
series SIGraDi
email
last changed 2025/07/21 11:50

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
doi https://doi.org/10.52842/conf.acadia.2018.216
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2009_111
id caadria2009_111
authors Biswas, Tajin; Ramesh Krishnamurti and Tsung-Hsien Wang
year 2009
title Framework for Sustainable Building Design
doi https://doi.org/10.52842/conf.caadria.2009.043
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 43-52
summary For sustainable building design, computational tools, mostly in the form of simulations, are employed to determine loads and to predict systems performance typically in terms of energy use. Currently, sustainability, in the building domain, is judged by a rating system. Design choices are validated, by measuring against one. The objective of the framework is to provide a general approach to processing the informational needs of any rating system, by identifying, categorizing and organizing relevant data requirements. Aspects of sustainability that designers deal with intuitively will have a structured guideline and gauge as one selects a rating system of choice.
keywords Sustainable design: rating system; framework; building information model
series CAADRIA
email
last changed 2022/06/07 07:52

_id 96d8
id 96d8
authors Booth, Peter; Loo, Stephen
year 2009
title Beyond Equilibrium: Sustainable Digital Design
source Sustainable theory/ theorizing sustainability Proceedings from the 5th International Conference of the Association of Architecture Victoria University, New Zealand, 4-5 September 2009
summary Implicit in current understandings of sustainability is the presence of a closed system with the capacity of equilibration. Sustainable practices, including design practices, are therefore assumed to possess a redemptive role: design is deployed (as environmentally sustainable design, etc.) to change habits, develop new technologies and recover marginalized practices in the hope of righting the balance between the environment and human endeavours.

Recent developments in experimental digital design have demonstrated non‐linear and highly complex relations between topological transformations, material change, and the temporal dimension of forces. More importantly, this method of design is bottom‐up, because it does not rely on design solutions presaged by conventions, or restricted by representation, but is emergent within the performance of computational design itself. We argue that digital design processes need to move beyond the flux of determinates and solutions in equilibrium, towards a radically continuous but consistent production, which is in effect, an expression of sustainable pedagogy.

The role of emergent digital techniques has significant impact on the methods in which computation is utilized within both practice and academic environments. This paper outlines a digital design studio on sustainability at the University of Tasmania, Australia that uses parametric modelling, digital performance testing, and topological morphology, concomitant with actual material fabrication, as a potent mode of collaborative design studio practice towards a sustainable design pedagogy.

keywords digital, computation, process, morphogenesis.
series other
type normal paper
email
last changed 2009/09/08 23:21

_id cf2009_458
id cf2009_458
authors Dillenburger, Benjamin; Braach, Markus and Hovestadt, Ludger
year 2009
title Building design as individual compromise between qualities and costs: A general approach for automated building generation under permanent cost and quality control
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 458-471
summary We introduce an evolutionary design approach for the automatic arrangement of a predefined space program on a given site. The design goal is to distribute floor spaces while ensuring the essential building performance and usage. The presented evolutionary strategy is applied to acquire optimal design solutions considering both environmental conditions and inner organization under diversified fitness functions. The evaluation process consists of the direct analysis of the spatial network and the physical factors in an adequate accuracy. The method provides a fast generation of qualified volumetric studies. The resulting buildings become a manifested compromise between qualities and cost.
keywords Evolutionary strategy, multi-fitness criteria, dual graph representation, network analysis, building envelope
series CAAD Futures
email
last changed 2009/06/08 20:53

_id ecaade2022_367
id ecaade2022_367
authors Doumpioti, Christina and Huang, Jeffrey
year 2022
title Field Condition - Environmental sensibility of spatial configurations with the use of machine intelligence
doi https://doi.org/10.52842/conf.ecaade.2022.2.067
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 67–74
summary Within computational environmental design (CED), different Machine Learning (ML) models are gaining ground. They aim for time efficiency by automating simulation and speeding up environmental performance feedback. This study suggests an approach that enhances not the optimization but the generative aspect of environmentally driven ML processes in architectural design. We follow Stan Allen's (2009) idea of 'field conditions' as a bottom-up phenomenon according to which form and space emerge from local invisible and dynamic connections. By employing parametric modeling, environmental analysis data, and conditional Generative Adversarial Networks [cGAN] we introduce a generative approach in design that reverses the typical design process of going from formal interpretation to analysis and encourages the emergence of spatial configurations with embedded environmental intelligence. We call it Intensive-driven Environmental Design Computation [IEDC], and we employ it in a case study on a residential building typology encountered in the Mediterranean. The paper describes the process, emphasizing dataset preparation as the stage where the logic of field conditions is established. The proposed research differentiates from cGAN models that offer automatic environmental performance predictions to one that spatial predictions stem from dynamic fields.
keywords Field Architecture, Environmental Design, Generative Design, Machine Learning, Residential Typologies
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2009_146
id caadria2009_146
authors Fagerström, Gustav
year 2009
title Dynamic Relaxation of Tensegrity Structures
doi https://doi.org/10.52842/conf.caadria.2009.553
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 553-562
summary The structural hierarchy inherent to tensegrities enables a building skin that performs on multiple levels simultaneously. While having one function in the global building mechanics, its individual components can work as self-contained systems balancing tensile and compressive forces locally within them. The behavior of elements under load is linear and thus describable analytically. When these are aggregated in a tensegrity however, the performance of the assembly as a whole is non-linear. In order to investigate further these relationships a method of dynamic relaxation will be developed. This tool allows for simulation and load analysis of a complex tensegrous network, based on the relationships between force, stiffness and dimension formulated by Young and the computational means provided by a parametric/associative modeling environment. This research investigates the possible formfinding through computational means of a double-layer tensegrity grid.
keywords Dynamic; relaxation; tensegrity; form finding
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_661380 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002