CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 593

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ecaade2009_021
id ecaade2009_021
authors Fleischmann, Moritz; Ahlquist, Sean
year 2009
title Cylindrical Mesh Morphologies: Study of Computational Meshes based on Parameters of Force, Material, and Space for the Design of Tension-Active Structures
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 39-46
doi https://doi.org/10.52842/conf.ecaade.2009.039
wos WOS:000334282200003
summary In experimenting with digital processes for simulating the behavior of tension-active cable nets, a method was developed for creating informed geometries by utilizing computational meshes that carry properties of structure, space, and material. A spring-based particle system provided the dynamics to simulate the flow of tension force through the geometry. Particular functions were scripted to embed logics for fabrication and analysis of spatial parameters. This formulated a lightweight, reactive design tool for which multiple cable net morphologies could be quickly generated. This paper will describe the experiments in creating the method to generate such cable net morphologies, and discuss the potential application for this computational framework to apply to other architectural systems.
keywords Computation, particle system, spring, dynamic relaxation, processing, fabrication
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2009_129
id ecaade2009_129
authors Hemmerling, Marco
year 2009
title Twister: An Integral Approach towards Digital Design and Construction
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 299-304
doi https://doi.org/10.52842/conf.ecaade.2009.299
wos WOS:000334282200036
summary The paper outlines the relevance of computational geometry within the design and production process of architecture. Based on the case study “Twister”, the digital chain - from the initial form-finding to the final realization of spatial concepts - is discussed in relation to geometric principles. The association with the fascinating complexity, which can be found in nature and its underlying geometry was the starting point for the project presented in the paper. The translation of geometric principles into a three-dimensional digital design model was followed by a process of transformation and optimization of the initial shape, that integrated aesthetic, spatial and structural qualities as well as aspects of material properties and conditions of production.
keywords Geometry, 3D modeling, rapid prototyping, photogrammetry, digital fabrication
series eCAADe
email
last changed 2022/06/07 07:49

_id cf2009_342
id cf2009_342
authors Lin, Chieh-Jen
year 2009
title Smart topological geometry: An interactive tool for coordination of spatial topology and geometry
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 342-352
summary This paper describes a prototype of an interactive tool named Smart Topology Geometry (STG) for coordination between spatial topology and geometry in the early design phase. STG focuses on the manipulations of virtual spaces and can manipulate the topological relations among them by instantly modifying the geometric properties of spaces so as to comply with the topological relation defined by the user.
keywords Spatial allocation, spatial topology, interactive manipulation and design representation
series CAAD Futures
email
last changed 2009/06/08 20:53

_id cf2009_687
id cf2009_687
authors Sommer, Bernhard; Palz, Norbert
year 2009
title Prototyping dynamic architecture: Material properties as design parameters
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 687- 699
summary This paper documents an ongoing research that combines recent developments in the field of Rapid Prototyping Technology for a materialisation of composite pneumatic models. The ability to create three dimensional prints with varying surface materials has the potential to assign the RP model a different role in the design process. The implementation of material performance, configured through CAD driven geometry, allows for an emergence of dynamical models that are freed from conventional representational function.
keywords Rapid prototyping, inflatables, performance driven design
series CAAD Futures
email
last changed 2009/06/08 20:53

_id ascaad2009_mohamed_abdalla
id ascaad2009_mohamed_abdalla
authors Abdalla, Mohamed Saad Atia
year 2009
title 3D Model and Decision Support System for Fire Safety: A case study of Kingdom of Bahrain
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 419-430
summary Fire agencies on all levels try hard to save lives, properties, and natural resources. Accurate access to critical information is essential in this regard, many agencies around the world have embraced GIS as a tool that helps them balance needs, uses, and hazards to promote sustainability of the environment while identifying and limiting vulnerability. At Kingdom of Bahrain, Ministry of interior established the Geographic Security System (GSS) to enhance the emergency response. The 3D of the GSS Consisted of 3 main parts: (1) 3D for terrain model, (2) 3D model for entire targeted zones, and (3) 3D models for individual buildings. In this paper, the integration between GSS system and 3D model will be illustrated, and how this kind of integration could enhance decision support system (DSS) for fire safety at kingdom of Bahrain. On other hand, we will highlight the technical and legislation difficulties faced in this project. Also, the future steps to enhance DSS will be discussed.
series ASCAAD
email
last changed 2009/06/30 08:12

_id ascaad2009_mai_abdelsalam
id ascaad2009_mai_abdelsalam
authors Abdelsalam, Mai
year 2009
title The Use of the Smart Geometry through Various Design Processes: Using the programming platform (parametric features) and generative components
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 297-304
summary The emergence of parametric generative design tools and prototyping manufacturing technology led to radical changes in architectural morphologies. This change increased the opportunity to develop innovative smart geometries. Integrating these algorithms in the parametric softwares led to variations in building design concepts increasing alternatives and decreasing the repetitive work previously needed in conventional CAD software. The chosen software in this research is Generative Components (GC). It is a software design tool for an associative and parametric design platform. It is tested for using Global Variables with associative functions during the concept creation and form GC comprises features. The results presented in this research may be considered an introduction to the smart geometry revolution. It deals with the generative design which applied in the design process from conceptual design phase, defining the problem, exploring design solutions, then how to develop the design phases. Office building is a building type which encourages new forms that needs computational processes to deal with repetitive functions and modular spaces and enclosed in a flexible creative structural skin. Generative design helps the office buildings to be arranged, analysed, and optimized using parameters in early stages in design process. By the end of the research, the use of the smart geometry in a high rise office building is defined and explained. The research is divided into three parts, first a summary of the basic theories of office buildings design and the sustainable requirements that affect it, and should be integrated. Secondly, the previous experiences in generating office buildings by Norman foster and Sergio Araya. At last, a case study is proposed to test and evaluate the use of the parametric generative methodology in designing an office building with specific emphasis on the function, environmental aspects and form generation using Generative Components (GC) Software.
series ASCAAD
email
last changed 2009/06/30 08:12

_id caadria2009_137
id caadria2009_137
authors Baerlecken, Daniel; Judith Reitz
year 2009
title Combinatorial Productivity
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 761-770
doi https://doi.org/10.52842/conf.caadria.2009.761
summary The paper investigates knotting techniques as a method for generating wall systems. The essential matter of the paper is to demonstrate the potential of knotted, algorithmic architecture through different research studies, which share the knotting of linear elements as a common methodology for design development. Combinatorial Productivity implies that by combining linear elements hidden properties of a system emerge and thereby the system becomes productive.
keywords Generative Design; Design methodology; Parametric Form Generation; Knot Theory; Scripting
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2010_215
id ecaade2010_215
authors Barczik, Guenter
year 2010
title Uneasy Coincidence? Massive Urbanization and New Exotic Geometries with Algebraic Geometry as an Extreme Example
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.217-226
doi https://doi.org/10.52842/conf.ecaade.2010.217
wos WOS:000340629400023
summary We investigate the recent coincidence of rapid global urbanization and unprecedented formal freedom in architectural design and ask whether this coincidence is an uneasy one. To study an extreme case of the new exotic geometries made possible through CAAD, we employ algebraic surfaces to experimentally design architecture in an university-based research and experimental design project. Such surfaces exhibit unprecedented complexity and new geometric and topological features yet are highly sound and harmonious. We continue and extend our research presented at the eCAADe 2009 conference in Istanbul.
keywords Algebraic geometry; Shape; Sculpture; design; Tool; Experiment; Methodology; Software
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2009_157
id ecaade2009_157
authors Barczik, Günter; Labs, Oliver; Lordick, Daniel
year 2009
title Algebraic Geometry in Architectural Design
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 455-464
doi https://doi.org/10.52842/conf.ecaade.2009.455
wos WOS:000334282200055
summary We describe the exploration of the manifold novel shapes found in algebraic geometry and their application in architectural design. These surfaces represent the zero-sets of certain polynomials of varying degrees. They are therefore very structured, coherent and harmonious yet at the same time geometrically and topologically highly complex. Their application in design is mostly unprecedended as they have only recently begun to become accessible through novel software tools. We present and discuss experimental student design and research projects where shapes found in algebraic geometry were developed into pavilion designs. We describe historic precedents for the inspiration of art and architecture through mathematics and show how algebraic surfaces can be used to expand architects’ sculptural vocabulary, make the utmost of three-dimensional sculptural qualities, employ shapes that have a strong internal structure, transcend the imaginable and explore polynomials as a new kind of shape-making tool.
keywords Geometry, algebraic geometry, shape, sculpture, design, tool, experiment, methodology, software
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ijac20097408
id ijac20097408
authors Biloria, Nimish; Valentina Sumini
year 2009
title Performative Building Skin Systems: A Morphogenomic Approach Towards Developing Real-Time Adaptive Building Skin Systems
source International Journal of Architectural Computing vol. 7 - no. 4, 643-676
summary Morphogenomics, a relatively new research area, involves understanding the role played by information regulation in the emergence of diverse natural and artificially generated morphologies. Performative building skin systems as a bottom-up parametric formation of context aware interdependent, ubiquitously communicating components leading to the development of continually performative systems is one of the multi-scalar derivations of the aforementioned Morphogenomic understanding. The agenda of adaptations for these building skins specifically corresponds to three domains of adaptation: structural, behavioral and physiological adaptations resulting in kinetic adaptability, energy generation, conservation, transport and usage principles as well as material property based changes per component. The developed skins adapt in real time via operating upon ubiquitous communication and data-regulation protocols for sensing and processing contextual information. Computational processes and information technology based tools and techniques such as parametric design, real-time simulation using game design software, environmental information mapping, sensing and actuating systems coupled with inbuilt control systems as well as manufacturing physical models in collaboration with praxis form a vital part of these skin systems. These experiments and analysis based on developing intrinsic inter-dependencies between contextual data, structure and material logistics thus lay the foundation for a new era of continually performing, self powering, real-time adaptive intelligent building skin systems.
series journal
last changed 2010/09/06 08:02

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2009_1013
id sigradi2009_1013
authors Chiarella, Mauro; Rodrigo García Alvarado; Underlea Bruscato
year 2009
title Geometría y Arquitectura. De la Rigurosidad Modular al Informalismo [Geometry and Architecture. Of the rigorousness modulating to informalism]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The geometry (science of the form and the space) and the architecture they possess an interesting road along the history of the western thought. The geometry contributes its capacity to interpret the structuring of the world and of the reason; while the architecture contributes with its capacity to transform the semantic and physical aspects of our habitat. The different advances in the geometric representation have defined the characteristics of the architectural spaces that go: since the rigorousness modulating of the Classicism and the birth of the Euclidean geometry, to the contemporary informalism; the incorporation of the digital mathematical calculation, and its strong review of the traditional cartesian space.
keywords Euclidean geometry; cartesian space; contemporary Informalism
series SIGRADI
email
last changed 2016/03/10 09:48

_id ecaade2009_002
id ecaade2009_002
authors Choo, Seung Yeon; Heo, Kyu Souk; Seo, Ji Hyo; Kang, Min Soo
year 2009
title Augmented Reality- Effective Assistance for Interior Design: Focus on Tangible AR Study
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 649-656
doi https://doi.org/10.52842/conf.ecaade.2009.649
wos WOS:000334282200078
summary This article presents an application of Augmented Reality technology for interior design. Plus, an Educational Interior Design Project is reviewed. Along with the dramatic progress of digital technology, virtual information techniques are also required for architectural projects. Thus, the new technology of Augmented Reality offers many advantages for digital design and construction fields. AR is also being considered as a new design approach for interior design. In an AR environment, virtual furniture can be displayed and modified in real-time on the screen, allowing the user to have an interactive experience with the virtual furniture in a real-world environment. Finally, this study proposes a new method for applying AR technology to interior design work, where a user can view virtual furniture and communicate with 3D virtual furniture data using a dynamic and flexible user interface. Plus, all the properties of the virtual furniture can be adjusted using occlusion based interaction methods for a Tangible Augmented Reality.
keywords Interior design, augmented reality, ARToolKit, tangible AR, interactive augmented reality
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2009_1019
id sigradi2009_1019
authors Christakou, Evangelos Dimitrios; Neander Furtado Silva
year 2009
title Da Perspectiva Artificialis ao Cyberespaço: Motor Gráfico e a Visualisação Interativa da Luz Natural no Interior do Edificio [From perspectiva artificialis to cyberspace: Game-engine and the interactive visualization of the natural light in the interior of the building]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary In order to support the conceptual design, the architect used throughout the years, mockups - scaled physical models - or perspective drawings that intended to predict architectural ambience before its effective construction. This paper studies the real time interactive visualization, focused on one of most important aspects inside building space: the natural light. Although the majority of physically-based algorithms currently existing was designed for the synthesis of static images which may not take into account how to rebuild the scene - in real time - when the user is doing experiments to change certain properties of design.
keywords omputer simulation; computer visualization; Natural Light; real-time interactivity
series SIGRADI
email
last changed 2016/03/10 09:49

_id cf2009_472
id cf2009_472
authors Ciblac, Thierry
year 2009
title L’analyse dimensionnelle comme aide à l’optimisation en phase de conception architecturale: applications à des cas de structures; Dimensional analysis as support toward optimization in architectural conception phase: applications to structural cases
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 472- 486
summary One of the research ways carried out in the ARIAM-LAREA laboratory aims at giving to architects computing tools for early evaluation of structures. A particular approach uses dimensional analysis and similitude properties in order to define parameter variation laws. Such laws are illustrated by analytical cases using the theory of strength of materials. For complex structures, a heuristic is proposed to give indications of parameter variation influence on mechanical behavior. Some applications are presented for early determination of structural size and limit values, using computations by finite element method.
keywords Structure, design, dimensional analysis, similitude
series CAAD Futures
email
last changed 2009/06/08 20:53

_id sigradi2009_627
id sigradi2009_627
authors Corrêa, Roberto Machado
year 2009
title Geração de Vistas Ortográficas pelo Método dos Rebatimentos em CAD 3D [Generation of Ortographics Views Using the Method in 3D CAD rotations]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This method consists in doing copys of modeling 3D solid in CAD enviroment, tri-dimensions rotations to positioning the copys like ortographics views, wen they are projects in one plan. The tri-dimensions rotations simule projection plan rotation, making students understand the process of views generate in mongean system. The result has being better in primary and second auxiliar views, witch depends of descriptive geometry study and spacial interpretation to be understand. The aplications of this method have been doing with sencond year students of engeneering course.
keywords Technical Drawing, orthographic views; rotation; CAD; education
series SIGRADI
email
last changed 2016/03/10 09:49

_id ecaade2009_108
id ecaade2009_108
authors Del Signore, Marcella; Cantrell, Bradley; Roppo, Barbara
year 2009
title HYBRIDS: Urban Systems and Information
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 843-850
doi https://doi.org/10.52842/conf.ecaade.2009.843
wos WOS:000334282200103
summary Digital tools are transforming design pedagogy by continuously redefining approaches to design processes and methodologies. A recurring theme in design education is the link between the analytical processes and the project development. While the investigations are formulated during the first phase, one typically moves back and forth between the two, allowing ideas created from the analysis to influence and modify the overall design directions. The data created through digital tools can be manipulated, altered, modified and, because of its inherent properties, carried throughout the overall design process. The focus of “Hybrids” seminar was to develop a strategy in which the analytical information and data created through digital tools, were able to inform a synergistic analog:digital design process. The seminar asked students to develop a temporary installation at the New Orleans Riverfront (Figure 1) focusing on the liminal condition that exists between the city and waters edge. The site is a nodal point between the French Quarter and the river that presents different levels of information and acts as a threshold between the city and the water edge.
keywords New design concepts and strategies, simulation, prediction and evaluation, modes of production
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia09_90
id acadia09_90
authors Fox, Michael
year 2009
title Flockwall: A Full-Scale Spatial Environment with Discrete Collaborative Modules
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 90-97
doi https://doi.org/10.52842/conf.acadia.2009.090
summary The paper highlights a built example of a human-scale spatial environment composed of discrete collaborative modules. The primary goals were to develop and understand strategies that can be applied to interactive architecture. The design and construction were carried out in an academic context that was displayed to a public audience of approximately 200,000 people over the course of three days. In addressing the performance parameters of the prototype, the concept focused on several key strategies: 1) geometry 2) movement 3) connections 4) scale and 5) computational control, and human interaction. The final objective of the approach was to create an innovative design that was a minimally functional spatial environment with the capability for evolving additional multi-functionality. Heavy emphasis was placed on creating a full-scale environment that a person could walk through, interact with, and experience spatially.
keywords Geometry, design logic, flock behavior, prototype, fabrication, responsive systems
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_415892 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002