CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 338

_id sigradi2009_964
id sigradi2009_964
authors Castriota, Leonardo Barci; Rezende
year 2009
title Fotografia digital e imagens multi-perspectivas no estudo de sítios históricos [Digital photography and multi-perspective image in the study of historical sities]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The creation of panoramic images for depicting urban landscape is a technique that has its origins in Antiquity. These images, which are known to represent large urban areas from multiple views, can be considered true works of art. Recently there has been a growing interest by some researchers, especially in the area of computer graphics, in the production of multi-perspective images for representing historic sites. However, the focus of these studies has been especially the computational aspects of this process, and there are few studies that address the impact and possibilities of these methodologies in historic preservation and urban planning. Realizing this shortcoming and considering the demand for a perspective more connected to cultural heritage, our proposal is to associate the excellent visual results of the multi-perspective images to the rich possibilities of computer simulation that can provide digital photography. The fact is that in recent years we have experienced technological innovations in the field of computer simulation that far exceeded our expectations. While most surveys of buildings are still based on the use of tape measure, pencil, paper and camera, the computer has become increasingly the main interface between the user and the information and is now the preferred instrument for the production and viewing of images, including the creation of virtual environments. Thus, this work seeks to explore the great potential which seems to exist in the combination of digital photography and the technique of multi-perspective image representation, which may provide new approaches and perspectives for the field of historic preservation. For that, we present a rapid and low cost methodology, developed in recent years, which generates orthophotos and metric multi-perspective images, useful for the analysis of built heritage and historic sites. In addition to that, we will also discuss further possible byproducts of this methodology, among which we could highlight the creation of three-dimensional models, and the analysis of building pathologies in combination with thermal photography. As a case study, we will present a representation of the Rua dos Caetés, a listed historic district in Belo Horizonte (MG), Brazil.
keywords Photogametry; Digital Photography; Heritage; Conservation
series SIGRADI
email
last changed 2016/03/10 09:48

_id sigradi2009_1019
id sigradi2009_1019
authors Christakou, Evangelos Dimitrios; Neander Furtado Silva
year 2009
title Da Perspectiva Artificialis ao Cyberespaço: Motor Gráfico e a Visualisação Interativa da Luz Natural no Interior do Edificio [From perspectiva artificialis to cyberspace: Game-engine and the interactive visualization of the natural light in the interior of the building]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary In order to support the conceptual design, the architect used throughout the years, mockups - scaled physical models - or perspective drawings that intended to predict architectural ambience before its effective construction. This paper studies the real time interactive visualization, focused on one of most important aspects inside building space: the natural light. Although the majority of physically-based algorithms currently existing was designed for the synthesis of static images which may not take into account how to rebuild the scene - in real time - when the user is doing experiments to change certain properties of design.
keywords omputer simulation; computer visualization; Natural Light; real-time interactivity
series SIGRADI
email
last changed 2016/03/10 09:49

_id acadia09_153
id acadia09_153
authors Ostwald, Michael J.; Tucker, Chris; Chalup, Stephan
year 2009
title Line Segmentation: A Computational Technique for Architectural Image Analysis
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 153-158
doi https://doi.org/10.52842/conf.acadia.2009.153
summary Planar methods have typically dominated the computational analysis of architectural and urban space and form. In contrast, analytical methods that consider the formal, or visual, qualities of architectural façades, or images of buildings, are not only rare, but only a few have ever been repeated and adequately tested. The present paper outlines a new method—derived from the Hough Transform algorithm—for the dissolution of architectural images into segmented lines that can be counted and charted, and that can have their spatial orientation determined. This method for investigating the visual qualities of buildings is demonstrated in an analysis of a series of images of suburban houses. The proposed method, line segmentation, is potentially significant because it is a method not commonly used for the quantitative analysis of the formal and textural character of real buildings, it is repeatable, and it delivers consistent results if a simple procedure is followed.
keywords optical analysis, complexity, design assesment
series ACADIA
type Normal paper
email
last changed 2022/06/07 08:00

_id ascaad2009_andrea_cammarata
id ascaad2009_andrea_cammarata
authors Cammarata, Andrea
year 2009
title Rebuilding Architecture: An analysis and critical investigation practice
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 121-134
summary The Cooperative Design Environment Laboratory (CoDE Lab) is carrying out a research with students, trainees and seniors who have previously participated to CAAD-assisted design courses. These courses were developed with the aim of making participants independent from the pre-analytical phase project to the renderings of the final artifact. The programs that have been used so far are Autodesk Revit, Graphisoft Archicad and Nemetschek Allplan.The teaching workgroup has always believed that analyzing, deconstructing and reconstructing the architecture teaches much in terms of understanding. If the process is done correctly, it entirely re-traces the creative dynamics developed by the original designer. Subsequently, the educational practice is to choose a notable architectural work, designed and/or created by a Master of architecture, and to reproduce it in all details: aesthetical-formal, morphological, technological, structural, modular, etc. The final result is an archive of well-developed reconstructed models of great specific interest. The students on the other hand thoroughly learn how to control the tools and all BIM planning procedures.
series ASCAAD
email
last changed 2009/06/30 08:12

_id ascaad2009_mai_abdelsalam
id ascaad2009_mai_abdelsalam
authors Abdelsalam, Mai
year 2009
title The Use of the Smart Geometry through Various Design Processes: Using the programming platform (parametric features) and generative components
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 297-304
summary The emergence of parametric generative design tools and prototyping manufacturing technology led to radical changes in architectural morphologies. This change increased the opportunity to develop innovative smart geometries. Integrating these algorithms in the parametric softwares led to variations in building design concepts increasing alternatives and decreasing the repetitive work previously needed in conventional CAD software. The chosen software in this research is Generative Components (GC). It is a software design tool for an associative and parametric design platform. It is tested for using Global Variables with associative functions during the concept creation and form GC comprises features. The results presented in this research may be considered an introduction to the smart geometry revolution. It deals with the generative design which applied in the design process from conceptual design phase, defining the problem, exploring design solutions, then how to develop the design phases. Office building is a building type which encourages new forms that needs computational processes to deal with repetitive functions and modular spaces and enclosed in a flexible creative structural skin. Generative design helps the office buildings to be arranged, analysed, and optimized using parameters in early stages in design process. By the end of the research, the use of the smart geometry in a high rise office building is defined and explained. The research is divided into three parts, first a summary of the basic theories of office buildings design and the sustainable requirements that affect it, and should be integrated. Secondly, the previous experiences in generating office buildings by Norman foster and Sergio Araya. At last, a case study is proposed to test and evaluate the use of the parametric generative methodology in designing an office building with specific emphasis on the function, environmental aspects and form generation using Generative Components (GC) Software.
series ASCAAD
email
last changed 2009/06/30 08:12

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2018.216
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ascaad2009_mustapha_ben_hamouche
id ascaad2009_mustapha_ben_hamouche
authors Ben-Hamouche, Mustapha
year 2009
title Gis in Architectural Education: Design as a place-making process
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 393-407
summary Responsiveness to site conditions and environment is one of the axioms of architectural design. However, most students’ design is made in a non-geo-coordinated cyberspace through CAAD design and thus leading to “flying” proposals” that are not attached to the context. GIS teaches students in architecture to initially refer to real locations as the space in which they design is geo-coordinated and provides the wider context of the project. Along the design process, the project surroundings from macro scale; that is the globe, to the micro-scale that is reflected in the existing buildings, the road network and the topography are constantly present. At the end stage, the project is seen not as a free standing building but rather as an integral part in a real place on Earth. The 3-D urban visualization gives the possibility of evaluating the degree of success of place-making and the fitness of the project to its context. The aim of the paper is to present how a GIS course can support CAAD and improve the architectural design process as well as the quality of the design output towards a contextual architecture. The paper is based on the experience of the author who is architects and urban planner, in teaching design studios and Urban Planning based on GIS as an elective course to graduating students in architecture at the University of Bahrain. It presents an alternative method that is called Permanent Presence of the Real World PPRW.
series ASCAAD
email
last changed 2009/06/30 08:12

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2009_103
id caadria2009_103
authors Boeykens, Stefan; Herman Neuckermans
year 2009
title Content Management Systems Versus Learning Environments
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 285-294
doi https://doi.org/10.52842/conf.caadria.2009.285
summary Schools and teachers increasingly apply Online Learning Environments for teaching and course management. In many cases, an existing platform is used to support the curriculum. At the K.U. Leuven in Belgium a campus-wide platform is provided, using a commercial Content Management System. At the same time, the Design and Building Methodology research group at the Department of Architecture, Urbanism and Planning developed a custom portal to organize Computer Aided Architectural Design courses and seminars. Integration of this portal into the university system was rather disappointing, since much of the flexibility and customizability was lost, without any chance of filling in the gaps. This article discusses the possibilities and limitations of existing web-based systems to support Computer Aided Architectural Design teaching and reports on our own experiences from the last decade. A comparison of selected systems is juxtaposed with the requirements derived from these experiences.
keywords Education; CMS; LMS; CAAD
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20097101
id ijac20097101
authors Boulaassal, H.; Landes, T.; Grussenmeyer, P.
year 2009
title Automatic Extraction of Planar Clusters and their Contours on Building Facades Recorded by Terrestrial Laser Scanner
source International Journal of Architectural Computing vol. 7 - no. 1, 1-20
summary Since 3D city models need to be realistic not only from a bird's point of view, but also from a pedestrian's point of view, the interest in the generation of 3D façade models is increasing. This paper presents two successive algorithms for automatically segmenting building façades scanned by Terrestrial Laser Scanner (TLS) into planar clusters and extracting their contours. Since majority of façade components are planes, the topic of automatic extraction of planar features has been studied. The RANSAC algorithm has been chosen among numerous methods. It is a robust estimator frequently used to compute model parameters from a dataset containing outliers, as it occurs in TLS data. Nevertheless, the RANSAC algorithm has been improved in order to extract the most significant planar clusters describing the main features composing the building façades. Subsequently, a second algorithm has been developed for extracting the contours of these features. The innovative idea presented in this paper is the efficient way to detect the points composing the contours. In order to evaluate the performances of both algorithms, they have successively been applied on samples with different characteristics, i.e. densities, types of façades and size of architectural details. Finally, a quality evaluation based on the comparison of planar clusters and contours obtained manually has been carried out. The results prove that the proposed algorithms deliver qualitative as well as quantitative satisfactory results and confirm that both algorithms are reliable for the forthcoming 3D modelling of building façades.
series journal
last changed 2009/06/23 08:07

_id caadria2009_012
id caadria2009_012
authors Chiu, Hao-Hsiu
year 2009
title Research on Hybrid Tectonic Methodologies for Responsive Architecture
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 493-502
doi https://doi.org/10.52842/conf.caadria.2009.493
summary This research intends to provide a comprehensive understanding and tectonic patterns of responsive architecture. By qualitatively analyzing a series of critical responsive buildings from Ito’s early Wind Tower through Diller and Scofidio’s Blur Building to Cloud 9’s recent Habitat Hotel, tectonic themes of “lightness”, “morphing”, ”improvisation”, and “networking” are set to the elucidate methodological relationships between their tectonic expressions and design concepts. Based on these designated themes, manipulation of materiality, techniques of construction, and mechanism of responsiveness in the studied cases are comparatively discussed and demonstrated with visualization of their tectonic design patterns. The objective of this research is to stress on the importance of tectonic consistency and offer evidences in combining physical components with digital configurations in order to achieve poetic expressions of structure, function, as well as aesthetics so that genuine spatial quality for digital era can be truly revealed.
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia09_201
id acadia09_201
authors De Kestelier, Xavier; Buswell, Richard
year 2009
title A Digital Design Environment for Large- Scale Rapid Manufacturing
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 201-208
doi https://doi.org/10.52842/conf.acadia.2009.201
summary Innovation in architectural design often follows technological innovation. This innovation can often be related to advances in construction techniques or design tools. This paper focuses on the development of a digital design environment for a new manufacturing process that can produce large architectural components. The design environment can be customized so that it incorporates both the flexibility and the constraints of the construction technology, such that the components produced maximize the core concept of the technology. Rapid Prototyping is a mature technology that has been around for 25 years in the manufacturing and product design industries. It is used primarily to speed up the product design cycle time from concept to physical realization for evaluation; it is now gaining a foothold in contemporary architectural practice. A number of protagonists are taking the Rapid Prototyping concept a stage further by developing large-scale processes capable of printing architectural components; there are even claims of the ability to produce whole buildings. These processes will give the architect a new palette of choice in terms of component design, and promise similar levels of geometric freedom as the Rapid Prototyping counterparts.
keywords Rapid prototyping, fabrication, hardware, concrete printing
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:55

_id ecaade2022_367
id ecaade2022_367
authors Doumpioti, Christina and Huang, Jeffrey
year 2022
title Field Condition - Environmental sensibility of spatial configurations with the use of machine intelligence
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 67–74
doi https://doi.org/10.52842/conf.ecaade.2022.2.067
summary Within computational environmental design (CED), different Machine Learning (ML) models are gaining ground. They aim for time efficiency by automating simulation and speeding up environmental performance feedback. This study suggests an approach that enhances not the optimization but the generative aspect of environmentally driven ML processes in architectural design. We follow Stan Allen's (2009) idea of 'field conditions' as a bottom-up phenomenon according to which form and space emerge from local invisible and dynamic connections. By employing parametric modeling, environmental analysis data, and conditional Generative Adversarial Networks [cGAN] we introduce a generative approach in design that reverses the typical design process of going from formal interpretation to analysis and encourages the emergence of spatial configurations with embedded environmental intelligence. We call it Intensive-driven Environmental Design Computation [IEDC], and we employ it in a case study on a residential building typology encountered in the Mediterranean. The paper describes the process, emphasizing dataset preparation as the stage where the logic of field conditions is established. The proposed research differentiates from cGAN models that offer automatic environmental performance predictions to one that spatial predictions stem from dynamic fields.
keywords Field Architecture, Environmental Design, Generative Design, Machine Learning, Residential Typologies
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia09_18
id acadia09_18
authors d’Estrée Sterk, Tristan
year 2009
title Introduction: Thoughts for Gen X-Speculating about the Rise of Continuous Measurement in Architecture
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 18-22
doi https://doi.org/10.52842/conf.acadia.2009.018
summary We are here, in Chicago, not to talk about what we know, but what we do not know. We are here to share ideas and to speculate about what the world might look like if it were challenged, rethought, and rebuilt. We are here to uncover, piece by piece, a sense of our own ambitions for an architecture influenced by today but motivated by tomorrow. We are all speculators and dreamers. We find places for dreaming in our work, our models, our essays, our lectures, our research, and our teaching. Through these activities we speculate on the architecture of tomorrow. Sometimes these speculations hold great promise, while at other times they do not – certainly much of what we do can be improved, refined, qualified, quantified, and genuinely benefit from being computed. This could be horrifying; it could set the scene for an engineered architecture if we do not adapt.But architecture is changing and responding to very fresh and different ways of thinking. As a movement, young architects are questioning their inheritance and establishing new values, new methods, and new forms of practice. We might best think of these young architects as the Generation X of architecture – a generation who shapes discourse through technological, social, and environmental lenses. From its smallest technical process to its highest level of thought, this conference represents the spirit of this movement.
keywords Introduction, Measurement, dynamic design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id cf2009_037
id cf2009_037
authors Forgues, Daniel; Eugenie, Yoann
year 2009
title Un « collaboratoire » comme nouveau contexte pour la transformation des pratiques via la technologie; A "collaboratory" as a new context for transforming practices through technology
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 37-50
summary Building design is today a major social, economic and environmental challenge. Design is also a source of innovation and an important economic driving force that requires the collaboration of professionals from various fields of expertise. But the traditional linear approach in design has shown its limits, and it often leads to non optimal design solutions and buildings with inadequate performances. This paper aims to validate a computer supported collaborative workspace that facilitates the participation, in an integrated approach, of the various members of a construction project team. The goal of the research is to be part of the evolution of work practices in design.
keywords Integrated design, collaborative workspace, task performance
series CAAD Futures
type normal paper
email
last changed 2009/06/09 07:11

_id ascaad2009_samir_foura
id ascaad2009_samir_foura
authors Foura, Samir and Samira Debache
year 2009
title Thermal Simulation In Residential Building Within Computer Aided Architectural Design: Integrated model
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 235-243
summary Nowadays, the architectural profession is seeking a better energy saving in the design of buildings. The fear of energy shortage in the very near future, together with the rapid rise in energy prices, put pressure on researchers on this field to develop buildings with more efficient heating systems and energy systems. This work is concerned mainly with the development of a software program analyzing comfort in buildings integrated in CAD architectural systems. The problem of presenting the computer with information concerning the building itself has been overcome through integration of thermal analysis with the building capabilities of CAD system. Mainly, such experience concerns the rules for calculating heat loss and heat gain of buildings in Algeria, The program has been developed in order to demonstrate the importance of the innovation of the computer aided-architectural-design field (CAAD) in the technology of buildings such as the three dimensional modeling offering environmental thermal analysis. CAAD is an integrated architectural design system which can be used to carry out many tasks such as working drawings, perspectives and thermal studies, etc., all from the same data. Results are obtained in tabular form or in graphical output on the visual display. The principle of this program is that all input data should be readily available to the designer at the early stages of the design before the user starts to run the integrated model. Particular attention is given to the analysis of thermal aspects including solar radiation gains. Average monthly energy requirement predictions have been estimated depending on the building design aspect. So, this integrated model (CAAD and simulation comfort) is supposed to help architects to decide on the best options for improving the design of buildings. Some of these options may be included at the early design stages analysis. Indications may also be given on how to improve the design. The model stored on CAAD system provides a valuable data base for all sort analytical programs to be integrated into the system. The amount of time and expertise required to use complex analytical methods in architectural practice can be successfully overcome by integration with CAAD system.
series ASCAAD
email
last changed 2009/06/30 08:12

_id acadia09_110
id acadia09_110
authors Gharleghi, Mehran; Sadeghy, Amin
year 2009
title Adaptive Pneus
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 110-117
doi https://doi.org/10.52842/conf.acadia.2009.110
summary The research focuses on the performative capacities of a pneumatic material system in regards to the specific environmental conditions. The use of Adaptation as a mechanism to modulate environmental performance was the main focus of the design process and research. The location of the sun during the day acts as a trigger to adapt the system, allowing the system to passively augment the environmental conditions. A new form-finding method that combines digital and material processes has been the main method by which the experiments were undertaken. This approach necessitates a dramatic shift in the architectural design, from producing static to environmentally responsive objects. It requires a shift in thinking from buildings as static and non-active systems to material system existing over time within specific environments capable of complex environmental performances.
keywords Responsive design, fabrication, prototyping, form finding, solar shading
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:51

_id ecaade2009_055
id ecaade2009_055
authors Gholipour, Vida; Bignon, Jean-Claude; Guimaraes, Laure Morel
year 2009
title Eco-Models: Modeling of a Digital Tool to Design Sustainable Buildings
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 551-558
doi https://doi.org/10.52842/conf.ecaade.2009.551
wos WOS:000334282200066
summary The demand for up-to-date information and design ‘tools’ to help architects design more sustainable buildings is rapidly expanding. This demand has led to use various ecological assessment tools as support tools for the design process. The absence of adequate tools, which contribute to early stages, as well as the additional costs of tardy modifications, has led us to propose an eco-design support tool. This tool is based on a methodology named “Eco-Model (EM) Method” that focuses on the ecological approaches of a building. This method proposes to consider environmental friendly solutions from the first sketches by proposing a number of micro-solutions, called here Eco-Model or “EM”. Subsequently, the study presents the first contour of software based on an EM approach. Thus, the various actors of the design team will be able to browse the useful information for their green projects and so collaborate to optimize the building design.
keywords Eco-Models, sustainable buildings, design support
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2009_805
id sigradi2009_805
authors Gonçalves Costa, Luís Gustavo; Arivaldo Leão de Amorim
year 2009
title Geração de Ortofotos para Produção de Mapas de Danos [Ortophoto creation for damage map production ]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The present work integrates the ongoing Master Degree Research Project entitled "Damage Map Representation and Pathology Database (Cronidas) Creation". This paper aims to discuss the search for alternatives in the development of a map of damages to be applied on historical buildings in order to assist preservation and restoration projects. Orthophotos of the facades and of the internal walls of buildings will be produced; once generated, these images are vectorized and transformed in drawings which represent the pathologies, in other words, the damage map. The research the following softwares: PhotoModeler®Pro5 for the generation of the orthophotos, Photoshop®CS3 for image treatment, and AutoCAD®2008 for tracing the relevant areas.
keywords damage map; conservation and restoration project; ortophoto; vectorization; building pathologies
series SIGRADI
email
last changed 2016/03/10 09:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 16HOMELOGIN (you are user _anon_602940 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002