CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 593

_id cf2009_105
id cf2009_105
authors Chevrier, Christine; Perrin, Jean-Pierre
year 2009
title Generation of architectural parametric components: Cultural heritage 3D modelling
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 105-118
summary This paper deals with 3D modeling of complex architectural elements for virtual 3D scene reconstruction based on images or point clouds. It presents a new method at the opposite of classical photogrammetry and lasergrammetry techniques: parametric components are created and then adapted to the measured data. We have conceived and developed a parametric shape generator tool for virtual 3D reconstruction of cultural heritage monuments. We present the geometrical study on the cupola shapes with all their diversity. It is illustrated with the Suleymaniyé Mosque in Turkey. The results are promising. The modeling time is greatly reduced.
keywords 3D modeling, architectural component, parametric modeling, cultural heritage
series CAAD Futures
email
last changed 2009/06/08 20:53

_id ecaade2009_129
id ecaade2009_129
authors Hemmerling, Marco
year 2009
title Twister: An Integral Approach towards Digital Design and Construction
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 299-304
doi https://doi.org/10.52842/conf.ecaade.2009.299
wos WOS:000334282200036
summary The paper outlines the relevance of computational geometry within the design and production process of architecture. Based on the case study “Twister”, the digital chain - from the initial form-finding to the final realization of spatial concepts - is discussed in relation to geometric principles. The association with the fascinating complexity, which can be found in nature and its underlying geometry was the starting point for the project presented in the paper. The translation of geometric principles into a three-dimensional digital design model was followed by a process of transformation and optimization of the initial shape, that integrated aesthetic, spatial and structural qualities as well as aspects of material properties and conditions of production.
keywords Geometry, 3D modeling, rapid prototyping, photogrammetry, digital fabrication
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia09_122
id acadia09_122
authors Oxman, Neri
year 2009
title Material-Based Design Computation: Tiling Behavior
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 122-129
doi https://doi.org/10.52842/conf.acadia.2009.122
summary From natural objects to man-made artifacts, tiling is all around us: it is the act of rationalizing highly complex form by breaking it up into smaller, continuous components. If well pursued, tiled objects can be easily designed and assembled. However, a geometric-centric view of tiling, whereby a predefined form determines the shape, size, and organization of tiles, has victimized the field of digital design. This paper questions the role of tiling as rationalizing method and offers an alternative theoretical framework and technical grounding for tiling behavior: the act of generation-through-tessellation informed by material behavior. The tools developed are implemented in the design of a 3D-printed chaise lounge, using multiple materials. The technical objective is to introduce a quantitative characterization and analysis of property mapping, as it is applied to a tiling algorithm using Voronoi cell tessellation. The network of tessellated Voronoi cells is used as an element in the Voronoi Finite Element Method (V-FEM) that the author developed. Various characterization functions and geometric parameters are generated, and V-FEM is executed for plane-strain analysis of doubly curved surfaces, from which global and local responses are evaluated.
keywords Tessellation, tiling, Voronoi, Algorithmic design
series ACADIA
type Normal paper
email
last changed 2022/06/07 08:00

_id sigradi2009_1012
id sigradi2009_1012
authors Celani, Gabriela; Laura Cancherini
year 2009
title Digitalização tridimensional de objetos: um estudo de caso [Scanning Three-dimensional Objects: A Case Study]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The present research is an exploratory study about medium-range 3D-scanning technologies for architectural applications. Its purpose was to gather information that will subside the future acquisition of a 3D-scanning equipment for the Laboratory for Automation and Prototyping for Architecture and Construction, LAPAC, at the University of Campinas (UNICAMP). In order to test some of these technologies, some experiments were carried out. Museum sculptures were digitized and the results were 3D-printed. Preliminary results show that accurate technologies are still very expensive, but there are some alternative, more accessible technologies, based on photogrammetry, which can lead to fairly good results.
keywords Digitalização 3D; scanner 3D; photogrametria; maquete arquitetônica.
series SIGRADI
email
last changed 2016/03/10 09:48

_id cf2009_771
id cf2009_771
authors LaBelle, Guillaume; Nembrini, Julien and Huang, Jeffrey
year 2009
title Programming framework for architectural design ANAR+: Object oriented geometry
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 771- 785
summary From the recent advent of scripting tools integrated into commercial CAAD software and everyday design practice, the use of programming applied to an architectural design process becomes a necessary field of study. The presented research explores the use of programming as explorative and reflexive medium (Schön, 1983) through the development of a programming framework for architectural design. Based on Java, the ANAR+ library is a parametric geometry environment meant to be used as programming interface by designers. Form exploration strategies based on parametric variations depend on the internal logic description, a key role for form generation. In most commercial CAD software, geometric data structures are often predefined objects, thus constraining the form exploration, whereas digital architectural research and teaching are in need for an encompassing tool able to step beyond new software products limitations.
keywords Parametric design, programming language, architectural Geometry, pro-cessing
series CAAD Futures
email
last changed 2009/06/08 20:53

_id sigradi2009_911
id sigradi2009_911
authors Teixeira, Fábio Gonçalves; Sérgio Leandro dos Santos
year 2009
title VirtusCADE, um Sistema para o Design Virtual de Produtos [VirtusCADE, A system for virtual design of products]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The knowledge of latest technology that allows the development of competitive products in reduced times is crucial to guarantee a sustainable growth of the national industry. This work presents the development of a computational system for the Virtual Design of products, the VirtusCADE, which is a CAD/CAE interactive software (Computer Aided Design/Computer Aided Engineering). The VirtusCADE includes 3D geometric modeling of surfaces and solids and mesh generation. The system uses the parametric modeling of surfaces, including algorithms for determination of intersection between surfaces and for triangular mesh generation in trimmed parametric surfaces. The graphical interface is interactive and allows the direct real time manipulation of objects (lines, surfaces and solids) in 3D using the OpenGL technology. The system prioritizes the usability, implementing several graphic tools that facilitate the manipulation in 3D. The VirtusCADE contemplates the structural simulation through the Finite Element Method. The code architecture is based on oriented object programming, which allows great scaling capability for the implementation of new tools. This project has great applicability in numerical simulation of physical phenomena, such structural analysis of buildings, vehicles parts, with impact in the industries of civil construction, metal-mechanics, aerospatial, naval and automotive.
keywords Virtual Design; Geometric modeling; Finite elements
series SIGRADI
email
last changed 2016/03/10 10:01

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2009_2001
id sigradi2009_2001
authors Corradi, Eduardo Marotti; Gabriela Celani
year 2009
title O "túnel de vento" - um exercício de projeto baseado em técnicas de animação [The "Wind Tunnel" - A Design Exercise Based in Animation Techniques]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The objective of the present research was to study the use of animation techniques as a tool for the design process. The study started with a literature review about the different possible applications of animation techniques in architectural design. Four main categories of applications were found: (1) space representation and “walk through”, (2) simulation of articulated elements and kinetic structures, (3) visualization and analysis of functional aspects of the buildings, such as circulation and fire escape, and finally (4) the generation of novel shapes. The second part of the research consisted of a design exercise in which animation techniques were used to generate a shape. For this purpose a wind simulator was used in 3DMAX. Next, Paracloud software was used to automatically generate a rib structure that allowed to produce a scale model of the shape with a laser cutter.
keywords Animation; design process; digital fabrication
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:49

_id ecaade2009_152
id ecaade2009_152
authors de Godoi, Giovana; Celani, Gabriela
year 2009
title Shape Grammars and Historical Town Renovations: A Case Study in Monte Alegre Do Sul
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 237-242
doi https://doi.org/10.52842/conf.ecaade.2009.237
wos WOS:000334282200029
summary Shape grammars have been used in architecture for analysis and synthesis - in the first case, mainly for the characterization of styles and in the later for the generation of novel compositions. The present research proposes the use of shape grammars for establishing guidelines for the requalification of historical areas that have lost their original characteristics due to improper renovations. In order to develop and test the proposed method, a study was carried out in a small Brazilian town called Monte Alegre do Sul. The town was chosen because its original urban morphology, developed in the XIXth century, is still relatively well preserved, although part of the original façades have been transformed. The objective of the research is to develop a shape grammar to set guidelines for the requalification of the already renovated façades in Monte Alegre do Sul.
keywords Façades, generative design systems, rule-based design, shape grammar
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2009_043
id ecaade2009_043
authors Dounas, Theodoros
year 2009
title Animation as a Framework for Generative Design
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 213-218
doi https://doi.org/10.52842/conf.ecaade.2009.213
wos WOS:000334282200026
summary The paper presents a framework for parametric and generative design based on shape grammars, implemented inside a 3d animation tool. A simple description is given on how animation works, along with parity features between shape grammars and animation tools. Work covered in previous papers by the writer, namely how the designer constructs individual tools from simple animation mechanisms is here expanded in a framework of algebras that not only function in geometric dimensions but also in time.
keywords Shape grammars, animation, shape algebras, design generation
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia09_255
id acadia09_255
authors Frumar, Jerome; Zhou, Yi Yi
year 2009
title Kinetic Tensegrity Grids with 3D Compressed Components
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 255-258
doi https://doi.org/10.52842/conf.acadia.2009.255
summary This paper details a series of preliminary explorations into the concept of kinetic tensegrity grids that can respond to stimuli by changing their shape, porosity, and transparency. The research presented explores double-layer tensegrity grids that utilize 3D “compressed” components. A case study demonstrates their applicability to the formation of sophisticated building envelopes that can actively or passively respond to changes in the environment. A computational form-finding tool is introduced to study design variations in real time. This tool is shown to expand the design spectrum by supporting increased complexity and revealing unexpected design potential. This research is significant as it outlines a practical methodology for conceiving responsive building systems. In particular, it illustrates an approach that synthesizes design concerns with engineering and fabrication goals.
series ACADIA
type Short paper
email
last changed 2022/06/07 07:50

_id sigradi2009_1177
id sigradi2009_1177
authors Paio, Alexandra C.R.; Benamy Turkienicz
year 2009
title An urban grammar for Portuguese colonial new towns in the 18th century
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This study describes the morphological urban order underlying Portuguese treatises and Portuguese urban cartographic representation produced from 16th century to 18th century. The historical documentation suggests that Pythagorean-Euclidian geometry appears to be a crucial ingredient for the understanding of Portuguese urban design-thinking and urban design-making. To unveil the genesis of the morphological urban order present in the Portuguese colonial plans of the eighteenth century, a descriptive method, Shape Grammar has been adopted. Shape Grammar, as method, supports the analysis of the form-making logic and has proved to be powerful in shape analysis, description, interpretation, classification, evaluation and generation of a design language.
keywords Urban Design; Knowledge-Based Model; Shape Grammars; Generative Systems
series SIGRADI
email
last changed 2016/03/10 09:57

_id caadria2009_109
id caadria2009_109
authors Wang, Chung-yang
year 2009
title Statics and Dynamics in The Process of CAD/CAM Fabrication
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 245-254
doi https://doi.org/10.52842/conf.caadria.2009.245
summary Through the progress of digital media, dynamic concepts contribute to vivid forms. Nevertheless, these forms still present static space, which cannot reflect the designer’s dynamic concept, a shape that changes over time. This is a setback for design and fabrication. Hence many researchers turn to designing dynamic architecture. However, the current development restricted by technical threshold is prone to solve the variation of functions instead of aesthetic-oriented changeable form. It is obvious that the difference between “statics” and “dynamics” becomes a watershed of aesthetics and functions. This research attempts to eliminate the above-mentioned barrier and to suggest a new CAD/CAM fabrication procedure based on aesthetics and reveal key tectonic factors that affect dynamic architecture.
keywords CAD/CAM: Statics/Dynamics; Tectonics; Fabrications
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2009_854
id sigradi2009_854
authors Antoniazzi, Asdrubal; Airton Cattani; Jaqueline Viel Caberlon Pedoni
year 2009
title Procedimentos metodológicos para simulação computacional de ambientes históricos [Methodological procedures for computer simulation of historical surroundings]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This study aims to present a classification of methodological procedures for using computer programmes to simulate architectural historical heritage. Produced for a Master’s Degree dissertation in Architecture, the methodology was developed based on several analyses of applications, possibilities and restrictions, with the assistance of photogrammetric reconstruction and several computer-graphics programmes. The files generated enable production of animations recording the changes experienced by buildings at various historical periods. These procedures were applied to the simulation of several buildings around the Praça Dante Alighieri in the centre of Caxias do Sul, Rio Grande do Sul, demonstrating their appropriateness and effectiveness and also showing the potential of computer-simulation resources for the historical environment, both educationally and in appreciation of architectural heritage.
keywords Three-dimensional geometric modelling; Computer simulation; Digital reconstruction; Historical environment
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2009_913
id sigradi2009_913
authors Bruno, Fernando Batista; José Luis Farinatti Aymone; Fábio Gonçalves Teixeira; Tânia Luisa Koltermann da Silva
year 2009
title Programa de modelagem 3D em VRML para web [VRML 3D modeling software for Web]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This work describes a software which is a VRML (Virtual Reality Modeling Language) modeler based on Web and a learning object for this language. The modeler, developed using PHP, HTML and JavaScript, runs directly on a website and it is able to show the model and its VRML code during the creation process, and to record it on the user machine. The software developed is able to model primitive forms, as box, cylinder and sphere, and faceset surfaces, helping users to model 3D objects and to understand VRML syntax. The model material is chosen according to color and transparency.
keywords Web; VRML; 3D Modeling; Virtual Reality
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2009_974
id sigradi2009_974
authors Cardoso, Eduardo; Branca Freitas de Oliveira
year 2009
title Uso da Tecnologia Computacional como Ferramenta para a Tomada de Decisão no Projeto de EstruturasMetálicas [Use of Computer Technology as a Decision-Making Tool in Metal Structure Projects]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary A world of intense and quick changes has led the society to the Information and Knowledge Age. The use of information technologies leads to deep changes and new processes. Systems and organizations must be prepared for the growing amount and speed of information. The main objective of this work is the application of the computer simulation tools CAD/CAE to help decision-making in architecture and engineering projects, specifically metal structure projects. This work presents the application of the finite element method-based software Abaqus/CAE to analyze and propose possible project solutions to the case study of a metal structure which covers a food court in a shopping mall.
keywords Design; CAD; CAE; Metal Structure; Computacional Simulation
series SIGRADI
email
last changed 2016/03/10 09:48

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2009_002
id ecaade2009_002
authors Choo, Seung Yeon; Heo, Kyu Souk; Seo, Ji Hyo; Kang, Min Soo
year 2009
title Augmented Reality- Effective Assistance for Interior Design: Focus on Tangible AR Study
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 649-656
doi https://doi.org/10.52842/conf.ecaade.2009.649
wos WOS:000334282200078
summary This article presents an application of Augmented Reality technology for interior design. Plus, an Educational Interior Design Project is reviewed. Along with the dramatic progress of digital technology, virtual information techniques are also required for architectural projects. Thus, the new technology of Augmented Reality offers many advantages for digital design and construction fields. AR is also being considered as a new design approach for interior design. In an AR environment, virtual furniture can be displayed and modified in real-time on the screen, allowing the user to have an interactive experience with the virtual furniture in a real-world environment. Finally, this study proposes a new method for applying AR technology to interior design work, where a user can view virtual furniture and communicate with 3D virtual furniture data using a dynamic and flexible user interface. Plus, all the properties of the virtual furniture can be adjusted using occlusion based interaction methods for a Tangible Augmented Reality.
keywords Interior design, augmented reality, ARToolKit, tangible AR, interactive augmented reality
series eCAADe
email
last changed 2022/06/07 07:56

_id ijac20097102
id ijac20097102
authors Georgopoulos, A.; Ioannidis, C.h.; Chrysostomou, C.h.; Ioakim, S.; Shieittanis, N.; Ioannides, M.
year 2009
title Contemporary Digital Methods for the Geometric Documentation of Churches in Cyprus
source International Journal of Architectural Computing vol. 7 - no. 1, 21-37
summary Recent advances in digital methods incorporating information technology have enabled the traditional surveyor and monument recorder to work faster, more accurately and in an automated way in order to produce advanced digital products, more versatile and more useful to the end users. Such methods include tacheometry, digital photogrammetry, as image-based method, terrestrial laser scanning and the development of specialized software in order to fully exploit the digital data acquisition. Usually, a combination of these methods gives the most efficient cost benefit results, by providing 2D vector and raster products and 3D textured models. In this paper two examples of the implementation of these methods in the geometric documentation of two churches, both significant for the history of Cyprus, are presented. It is concerned with the churches of Virgin Mary (Panayia) Podithou, in Galata and St. George Nikoxylitis in Droushia. The applied methodology, using classical and contemporary techniques of commercial and in-house developed software is presented. Comparative tests for the achieved accuracies and the completeness of each method's products have been made, and their merits and usefulness are explained.
series journal
last changed 2009/06/23 08:07

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_554484 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002