CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 593

_id ecaade2009_157
id ecaade2009_157
authors Barczik, Günter; Labs, Oliver; Lordick, Daniel
year 2009
title Algebraic Geometry in Architectural Design
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 455-464
doi https://doi.org/10.52842/conf.ecaade.2009.455
wos WOS:000334282200055
summary We describe the exploration of the manifold novel shapes found in algebraic geometry and their application in architectural design. These surfaces represent the zero-sets of certain polynomials of varying degrees. They are therefore very structured, coherent and harmonious yet at the same time geometrically and topologically highly complex. Their application in design is mostly unprecedended as they have only recently begun to become accessible through novel software tools. We present and discuss experimental student design and research projects where shapes found in algebraic geometry were developed into pavilion designs. We describe historic precedents for the inspiration of art and architecture through mathematics and show how algebraic surfaces can be used to expand architects’ sculptural vocabulary, make the utmost of three-dimensional sculptural qualities, employ shapes that have a strong internal structure, transcend the imaginable and explore polynomials as a new kind of shape-making tool.
keywords Geometry, algebraic geometry, shape, sculpture, design, tool, experiment, methodology, software
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2009_165
id ecaade2009_165
authors Cardoso, Daniel; Argun, Avni; Rocha, Carlos A.; Gonzalez, Jose
year 2009
title Drawing Transparencies: ‘Responsible Responsiveness’ in Spaces Through Organic Electrochromism
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 83-88
doi https://doi.org/10.52842/conf.ecaade.2009.083
wos WOS:000334282200009
summary A system for using organic polymers as electrochromic components for a building’s facade is proposed, and early prototypes are presented. The potentialities of such system, Croma, are considered in two aspects: a) as interactive facades that change opacity in reaction to touch –hence “drawing with transparency”- and b) as elements to automate energy-smart behaviors of a building. Some implications are discussed.
keywords Responsive Surfaces, Smart-Materials, Interactive Architecture, Electrochromism
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2009_067
id caadria2009_067
authors Nilkaew, Piyaboon
year 2009
title The Study of Building Management by using 3D Digital Modeling and Database: ABFM
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 235-243
doi https://doi.org/10.52842/conf.caadria.2009.235
summary The principal objective of building management is to control facilities planning and facilities operations and maintenance, that effective criteria in strategic planning about preventive maintenance and predictive maintenance. The key of success in managing the building and facilities is all about collecting and interpreting data on diverse facets of property use. Computer databases are the ideal vehicles in which to log, store and manipulate data; almost unlimited information can be measured and entered en masse. The strength of such information storage is its capacity for expansion and the diversity of subject; it becomes large and requires greater and greater operator familiarity with its structure in order to interrogate successfully. The ultimate solution is to computer–base the entire operation, by using the three-dimensional building modelling to control the operation. This solution will simulate building in virtual environment and the building system data (Architectural part and Engineering part) will collect in digital data type. The digital data will classification and made three-dimensional database relations. This research focus in three sections of the operation as three-dimensional database relationship, topological simulation and smart system, that applied to generate the prototype building management application “Architecture Building Facilities Management: ABFM”.
keywords Building management; facilities management; 3D database; smart system
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2009_320
id caadria2009_320
authors Schoch, Odilo
year 2009
title Ubicomp-Kaizen
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 215-224
doi https://doi.org/10.52842/conf.caadria.2009.215
summary This paper describes the successful development of a design supporting method called ‘Ubicomp-Kaizen’ for the design of computerintegrated ‘smart’ buildings. The tool uses known methods of qualitymanagement of the car-manufacturing industry and integrates them into the architectural design process. By this, the CAAD-topics ‘design methodology’, ‘ubicomp/smart buildings’, ‘interactive architecture’ and ‘Building Information Model (BIM)’ are involved. In result it proves the successful integration and application of tools known from the product development industry such as ‘Quality-Function-Deployment (QFD)’ and ‘Failure Mode and Effects Analyze (FMEA)’ within the iterative building design. The outlook formulates a side-result which is the setup of a digital decision supporting tool and the extension of the IFC-definitions in order to integrate aspects of user-interaction and ubicomp."
keywords design processing, building information modelling (BIM), methodology, sustainability, ubicomp, interdisciplinary
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_508
id ecaadesigradi2019_508
authors Yenice, Yagmur and Park, Daekwon
year 2019
title V-INCA - Designing a smart geometric configuration for dry masonry wall
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 515-520
doi https://doi.org/10.52842/conf.ecaade.2019.2.515
summary Soil is still used as a building material in many parts of the world, especially in rural areas. Approximately 30% of the world's population is still living in shelters made by soil (Berge 2009). One of the techniques is using soil in mudbrick form, which is sun dried instead of being fired in kilns. However, mud bricks have low compressive and tensile strength. Instead of enhancing the mix formula, we focus on designing the geometry of the brick itself to improve walls' overall compressive and tensile strength. The goal of the research is to explore an innovative way to build masonry walls through geometrical examination together with computer aided design. Unlike traditional horizontal laying of the rectangular brick elements, 3D designed blocks take advantage of gravity and foster an accelerated assembly without mortar. They create a balance point in the middle of the wall during the construction. The geometry of V-INCA blocks allows dry construction which will reduce the amount of time spent on the site. Load distribution and the friction between two surfaces are sufficient to have a dry construction. Thus, a wall built with V-INCA is stronger intrinsically due to its geometry.
keywords Dry masonry construction; smart geometrical design; on-site material; compressed earth blocks; Inca masonry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ecaade2009_003
id ecaade2009_003
authors Brell-Cokcan, Sigrid; Reis, Martin; Schmiedhofer, Heinz; Braumann, Johannes
year 2009
title Digital Design to Digital Production: Flank Milling with a 7-Axis CNC-Milling Robot and Parametric Design
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 323-330
doi https://doi.org/10.52842/conf.ecaade.2009.323
wos WOS:000334282200039
summary Just recently Flank Milling has opened up new possibilities in detailing large-scale architectural building envelopes. Whereas examples such as the Hungerburgbahn by Zaha Hadid show the application of Flank Milling at the end of the architectural manufacturing process, our research, in contrast, focuses on the implementation of constraints immanent to manufacturing techniques as early architectural design parameters. This process is explored by the help of generative modeling tools, to allow an intuitive design of freeform parametric curves and surfaces while at the same time obeying crucial geometric conditions. In this paper, we will focus on the “digital design to digital production” process on a 7-axis industrial CNC -robot.
keywords CNC milling technologies, robot-milling, parametric design, freeform surface, digital architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2009_046
id caadria2009_046
authors Haeusler, Matthias Hank
year 2009
title Modulations of Voxel Surfaces Through Emotional Expressions to Generate A Feedback Loop Between Private Mood and Public Image
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 173-182
doi https://doi.org/10.52842/conf.caadria.2009.173
summary My proposal is an investigation into the perceptual boundaries between human and architectural expression. It asks how architecture can creatively adopt human expression by using the emotions ‘displayed’ on the ‘surface face’ as a generator for displaying a surface on a voxel façade to achieve a cross-connecting perceptual change with modulations through emotion (Massumi, 2006). Through voxel facades the public with their expressed emotions will be included in the decision process of defining space, by expressing our innermost feelings through an architectural medium. Thus emotions of the individual have a platform and can be conveyed indirectly to the public, and in turn open up discussions about the state of the community through the state of the façade. An alliance of media and place in an urban context can be achieved and created, with the participation of its inhabitants, along with a new perception of how media and architecture can together shape and inform spatial relations for a feedback loop between private mood and public image.
keywords Voxel façade; simulation; human-environment interaction; dynamic space
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2009_014
id ecaade2009_014
authors Haeusler, Matthias Hank
year 2009
title Media-Augmented Surfaces: Embedding Media Technology into Architectural Surface to Allow a Constant Shift between Static Architectural Surface and Dynamic Digital Display
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 483-490
doi https://doi.org/10.52842/conf.ecaade.2009.483
wos WOS:000334282200058
summary The way screens are attached to architecture at present limits architectural surfaces to carriers of signs. The research presented in this paper offers a possible solution that allows architectural surfaces to be both a space-defining element that has certain architectural material qualities and at the same time allows media technology to be embedded. These surfaces can alter their state from static material to dynamic image in an instance. The paper presents a prototype capable of fulfilling this requirement. It also positions the research within the architectural discussion by comparing it to works of others and confirming its research value by reference to work in a similar direction. Finally, the paper evaluates the research and concludes that it could offer a ‘fabric’ to be used as a sort of media clothing for architecture in the electronic age (Ito, 2001).
keywords Media facade technology, media-augmented spaces, architectural screen design, media architecture, digital displays
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia09_174
id acadia09_174
authors Peters, Brady
year 2009
title Parametric Acoustic Surfaces
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 174-181
doi https://doi.org/10.52842/conf.acadia.2009.174
summary Acoustics are important performance criteria for architecture; however, architects rarely consider them, except, perhaps, when designing concert halls. Architectural spaces can be said to perform well or poorly in terms of their acoustic qualities. By altering the geometry or material characteristics of the surfaces within a room in specific ways, the acoustics can be controlled. Once the geometric rules governing these acoustic alterations are understood, these rules can be encoded into a CAD system through parametric modeling or the use of computer programming. The architectural designer can then generate acoustically regulating surfaces according to desired performance criteria. In this way, acoustic engineering links to architectural design, and allows architectural design to become acoustically performance-driven. This paper considers three primary types of acoustic surfaces: absorbers, resonators, and diffusers. complex surfaces that combine these three performance characteristics in different ways are proposed.
keywords Acoustic design, geometry, materiality, scripting
series ACADIA
type Normal paper
email
last changed 2022/06/07 08:00

_id caadria2009_091
id caadria2009_091
authors Pitts, Greg; Sambit Data
year 2009
title Parametric Modelling of Architectural Surfaces
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 635-644
doi https://doi.org/10.52842/conf.caadria.2009.635
summary Parametric modelling is gaining in popularity as both a fabrication and design tool, but its application in the architectural design industry has not been widely explored. Parametric modelling has the ability to generate complex forms with intuitively reactive components, allowing designers to express and fabricate structures previously too laborious and geometrically complex to realise. This allows designers to address a project at both the macro and micro levels of resolution in the governing control surface and the individual repetitive component. This two level modelling control, of component and overall surface, can allow designers to explore new types of form generation subject to parametric constraints. Shading screens have been selected as the focus for this paper and are used as a medium to explore form generation within a given set of functional parameters. Screens can have many applications in a building but for the purpose of the following case studies, lighting quality and passive sun control are the main functional requirement. A set of screen components have been designed within certain shading parameters to create a generic component that can automatically adapt to any given climatic conditions. These will then be applied to surfaces of varying degrees of geometric complexity to be analysed in their ability to correctly tessellate and create a unified screening array true to the lighting requirements placed on the generic component.
keywords Parametric Modelling: Screening; Design; Fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id ascaad2009_mahmoud_riad
id ascaad2009_mahmoud_riad
authors Riad, Mahmoud
year 2009
title Musical Deconstruction / Reconstruction: Visualizing architectonic spaces through music
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 225-233
summary There is a common belief that music and architecture are connected through a hidden a dimension. Both arts, when abstracted intellectually (through mathematics) or emotionally (through phenomenological experience), share a number of ordering principles, having the same notion of crescendo in sequence and progression. Many have sought to unlock this hidden dimension to create artwork that lets our souls transcend up to the heavens. There are five different methods where architects have used music in their design approach: there are those who use harmonic proportions found in musical consonances as room dimensions to create harmonic spaces, flowing into each other like musical chords (Palladio, Steven Holl); those who believe that music is ‘design in time’ use rhythmic elements of music and apply it to their vertical surfaces and structural grids (Iannis Xenakis, Le Corbusier); those who use architecture as a musical instrument experiment with sound and acoustics to create a phenomenological environment (Bernhard Leitner, Peter Zumthor); those gifted with synethsesia (stimulating one sensory preceptor with another, e.g. seeing colors by listening to music, or vice versa) use certain musical pieces as an inspiration for form generation (Wassily Kandinsky, Steven Holl); and there are those who deconstruct an element in music and reconstruct it to architectural form, highlighting common themes between both arts (Iannis Xenakis, Daniel Libeskind). These five different methods have been the topic of research of many architectural scholars using western music as reference. The question becomes what if the musical reference is changed? Classical, rock, pop, country, jazz, and blues music are very different from one another, yet they share similar foundational musical structures. One may go further and experiment with various world music as reference, which is very different than western music in terms of musical structure. Linguists and musicologists have discussed the origins of music in relation to language. They hypothesize that cognitive elements found in language are somehow carried into the region's music. This paper documents the research of the author in this topic, discussing the digital modeling applications adopted that make such an investigation possible. The interest here is exploring how the visual space is altered when the musical reference is changed, and whether properties of the musical reference are evident in the architectural visualization. The musical references will be limited to Western Classical and Arabic music.
series ASCAAD
email
last changed 2009/06/30 08:12

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia09_273
id acadia09_273
authors Keough, Ian
year 2009
title goBIM: BIM Review for the iPhone
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 273-277
doi https://doi.org/10.52842/conf.acadia.2009.273
summary This paper summarizes the development of goBIM, a model viewer, markup, and data-querying environment that utilizes Apple’s iPhone and Autodesk’s Revit software. Geometric and database information are written to a user defined server location via a custom Revit plugin. Model geometry and database information are loaded at run-time from the web server to the goBIM iPhone application, using a cellular network connection or WiFi. The user can then navigate the 3D environment, selecting objects to view their associated database information. The user has the ability to tag elements in the model with additional data, which can then be pushed back to the server and reloaded in the local version of the Revit model. BIM data can now be accessed anywhere there is a WiFi or cellular network connection available.
series ACADIA
type Short paper
email
last changed 2022/06/07 07:52

_id acadia09_264
id acadia09_264
authors Zhang, Yu; Feng, Han; Wang, Jianguo
year 2009
title An Interactive Decision Support System for Deriving Plot Ratios Based on the Similarity Relations Between Land Attributes
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 264-266
doi https://doi.org/10.52842/conf.acadia.2009.264
summary This paper presents a simple tool for deciding land attribute plot ratios by defining elementary entities and their relationships from the viewpoint of a complex adaptive system. Each entity in this case, a block in the city, is described according to its condition and potential for development, such as land function, accessibility, landscape control, and so on. This not only provides a rich yet subtle identification of each entity, but also creates the basis to establish dynamic interconnections between them. The similarity coefficient, calculated by the comparison between the different blocks’ factors fits well with the explanation of the spontaneous development of the city. The weight of every factor and the threshold of the similarity coefficient are both set as variables, with the optimized value recommended as a default, which ensures a multitudinal application of this software with a focus on different aspects of urban planning. The resultant self-regulatory system with flexible input is not only a credible tool for deriving plot ratios, but also an effective platform to activate urban design creations. The system, as a socio-technical tool, enhances the essential process of urban self-organization and hetero-organization.
keywords Decision Support, software, self-organization systems, parametric systems
series ACADIA
type Short paper
email
last changed 2022/06/07 07:57

_id ascaad2009_mai_abdelsalam
id ascaad2009_mai_abdelsalam
authors Abdelsalam, Mai
year 2009
title The Use of the Smart Geometry through Various Design Processes: Using the programming platform (parametric features) and generative components
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 297-304
summary The emergence of parametric generative design tools and prototyping manufacturing technology led to radical changes in architectural morphologies. This change increased the opportunity to develop innovative smart geometries. Integrating these algorithms in the parametric softwares led to variations in building design concepts increasing alternatives and decreasing the repetitive work previously needed in conventional CAD software. The chosen software in this research is Generative Components (GC). It is a software design tool for an associative and parametric design platform. It is tested for using Global Variables with associative functions during the concept creation and form GC comprises features. The results presented in this research may be considered an introduction to the smart geometry revolution. It deals with the generative design which applied in the design process from conceptual design phase, defining the problem, exploring design solutions, then how to develop the design phases. Office building is a building type which encourages new forms that needs computational processes to deal with repetitive functions and modular spaces and enclosed in a flexible creative structural skin. Generative design helps the office buildings to be arranged, analysed, and optimized using parameters in early stages in design process. By the end of the research, the use of the smart geometry in a high rise office building is defined and explained. The research is divided into three parts, first a summary of the basic theories of office buildings design and the sustainable requirements that affect it, and should be integrated. Secondly, the previous experiences in generating office buildings by Norman foster and Sergio Araya. At last, a case study is proposed to test and evaluate the use of the parametric generative methodology in designing an office building with specific emphasis on the function, environmental aspects and form generation using Generative Components (GC) Software.
series ASCAAD
email
last changed 2009/06/30 08:12

_id sigradi2009_965
id sigradi2009_965
authors Gomes, Cristina Caramelo; Maria João Felgueiras Teixeira Machado Correia
year 2009
title The impact of digital architecture design in the conception and management of dwelling environments
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary When technology moves forward, architecture changes with it: it changes the architecture methodology and it changes the architectural result. This paper discusses the variables involved, pointing the major constraints to the intensive use of ICT in the architectural process. It highlights the need to rethink the user’s involvement in the conception of the built environment, increasing it, and suggests new approaches to meet this need by using ICT and VR.
keywords Smart Houses; Virtual Reality; BIM; Dwelling Environment
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2018.216
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2010_215
id ecaade2010_215
authors Barczik, Guenter
year 2010
title Uneasy Coincidence? Massive Urbanization and New Exotic Geometries with Algebraic Geometry as an Extreme Example
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.217-226
doi https://doi.org/10.52842/conf.ecaade.2010.217
wos WOS:000340629400023
summary We investigate the recent coincidence of rapid global urbanization and unprecedented formal freedom in architectural design and ask whether this coincidence is an uneasy one. To study an extreme case of the new exotic geometries made possible through CAAD, we employ algebraic surfaces to experimentally design architecture in an university-based research and experimental design project. Such surfaces exhibit unprecedented complexity and new geometric and topological features yet are highly sound and harmonious. We continue and extend our research presented at the eCAADe 2009 conference in Istanbul.
keywords Algebraic geometry; Shape; Sculpture; design; Tool; Experiment; Methodology; Software
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia09_82
id acadia09_82
authors Bitonti, Francis
year 2009
title Computational Tectonics
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 82-89
doi https://doi.org/10.52842/conf.acadia.2009.082
summary The goal of this research is to define a methodology for the construction of complex non-repeating surfaces and structures that rely on the formulation of a singular tectonic mechanism. Computational systems like cellular automata seem to suggest that it might be possible for modular material systems to self-assemble into complex organizations. A single series of modular parts could be capable of producing not only complex behavior, but also, depending on initial conditions, simple periodic behavior. The research outlined in this paper uses simple geometric transformations to produce tectonic computers that can be applied to a variety of building systems. This paper outlines a methodology for encoding and decoding material assemblages as discrete computational systems. Exploiting the combinatorial nature of tectonic systems makes it possible to produce a population of “material algorithms” capable of exhibiting a wide range of behaviors. Encoding assemblages as discrete systems affords the designer the ability to enumerate and search all possible permutations of a tectonic system. In this paper, we will discuss the calculations and computational processes used to encode material assemblages as populations of discrete algorithms.
keywords Fabrication, modular system, structure, enumeration systems, material algorithms
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:52

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
doi https://doi.org/10.52842/conf.ecaade.2011.751
wos WOS:000335665500087
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_136441 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002