CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 586

_id ascaad2009_samir_foura
id ascaad2009_samir_foura
authors Foura, Samir and Samira Debache
year 2009
title Thermal Simulation In Residential Building Within Computer Aided Architectural Design: Integrated model
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 235-243
summary Nowadays, the architectural profession is seeking a better energy saving in the design of buildings. The fear of energy shortage in the very near future, together with the rapid rise in energy prices, put pressure on researchers on this field to develop buildings with more efficient heating systems and energy systems. This work is concerned mainly with the development of a software program analyzing comfort in buildings integrated in CAD architectural systems. The problem of presenting the computer with information concerning the building itself has been overcome through integration of thermal analysis with the building capabilities of CAD system. Mainly, such experience concerns the rules for calculating heat loss and heat gain of buildings in Algeria, The program has been developed in order to demonstrate the importance of the innovation of the computer aided-architectural-design field (CAAD) in the technology of buildings such as the three dimensional modeling offering environmental thermal analysis. CAAD is an integrated architectural design system which can be used to carry out many tasks such as working drawings, perspectives and thermal studies, etc., all from the same data. Results are obtained in tabular form or in graphical output on the visual display. The principle of this program is that all input data should be readily available to the designer at the early stages of the design before the user starts to run the integrated model. Particular attention is given to the analysis of thermal aspects including solar radiation gains. Average monthly energy requirement predictions have been estimated depending on the building design aspect. So, this integrated model (CAAD and simulation comfort) is supposed to help architects to decide on the best options for improving the design of buildings. Some of these options may be included at the early design stages analysis. Indications may also be given on how to improve the design. The model stored on CAAD system provides a valuable data base for all sort analytical programs to be integrated into the system. The amount of time and expertise required to use complex analytical methods in architectural practice can be successfully overcome by integration with CAAD system.
series ASCAAD
email
last changed 2009/06/30 08:12

_id acadia09_110
id acadia09_110
authors Gharleghi, Mehran; Sadeghy, Amin
year 2009
title Adaptive Pneus
doi https://doi.org/10.52842/conf.acadia.2009.110
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 110-117
summary The research focuses on the performative capacities of a pneumatic material system in regards to the specific environmental conditions. The use of Adaptation as a mechanism to modulate environmental performance was the main focus of the design process and research. The location of the sun during the day acts as a trigger to adapt the system, allowing the system to passively augment the environmental conditions. A new form-finding method that combines digital and material processes has been the main method by which the experiments were undertaken. This approach necessitates a dramatic shift in the architectural design, from producing static to environmentally responsive objects. It requires a shift in thinking from buildings as static and non-active systems to material system existing over time within specific environments capable of complex environmental performances.
keywords Responsive design, fabrication, prototyping, form finding, solar shading
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:51

_id cf2009_poster_33
id cf2009_poster_33
authors Vanzer, Paul Martin
year 2009
title Transformation of Housing in the ecology of desert climate: A Bioclimatic -Passive Solar Design vision of the Building integration with a dry environment
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary This investigation arises from the need to include the systems of environmental natural conditioning and the architectural project in the ecology of the desert dry-climate. In this research, it is proposed to investigate the main features and techniques used in Southern Peru as an answer to build in a desert environment with high levels of sunlight and very few rain days. Identifying the historic processes of the vernacular architecture, in which we recognize evolved coherent forms, making possible to define the strategies with which to recreate architecture responsive to the ecology of the desert dry- climate.
keywords Bioclimatic architecture, architecture in desert regions, solar architecture, sustainability, architecture and climate vernacular architecture
series CAAD Futures
type poster
last changed 2009/07/08 22:12

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20097408
id ijac20097408
authors Biloria, Nimish; Valentina Sumini
year 2009
title Performative Building Skin Systems: A Morphogenomic Approach Towards Developing Real-Time Adaptive Building Skin Systems
source International Journal of Architectural Computing vol. 7 - no. 4, 643-676
summary Morphogenomics, a relatively new research area, involves understanding the role played by information regulation in the emergence of diverse natural and artificially generated morphologies. Performative building skin systems as a bottom-up parametric formation of context aware interdependent, ubiquitously communicating components leading to the development of continually performative systems is one of the multi-scalar derivations of the aforementioned Morphogenomic understanding. The agenda of adaptations for these building skins specifically corresponds to three domains of adaptation: structural, behavioral and physiological adaptations resulting in kinetic adaptability, energy generation, conservation, transport and usage principles as well as material property based changes per component. The developed skins adapt in real time via operating upon ubiquitous communication and data-regulation protocols for sensing and processing contextual information. Computational processes and information technology based tools and techniques such as parametric design, real-time simulation using game design software, environmental information mapping, sensing and actuating systems coupled with inbuilt control systems as well as manufacturing physical models in collaboration with praxis form a vital part of these skin systems. These experiments and analysis based on developing intrinsic inter-dependencies between contextual data, structure and material logistics thus lay the foundation for a new era of continually performing, self powering, real-time adaptive intelligent building skin systems.
series journal
last changed 2010/09/06 08:02

_id cf2009_poster_23
id cf2009_poster_23
authors Thorpe, Graham and Sam Kashuk
year 2009
title A Syncretization Of Architecture, Engineering And Science:The use of CAD technology as a pedagogical tool in the teaching of environmentally sustainable design
source T. Tidafi and T. Dorta (eds) Joining Languages Cultures and Visions: CAADFutures 2009 CD-Rom
summary Energy consumption in buildings is responsible for about 40% of Australia’s greenhouse gas emissions. It is quite feasible that the energy consumption in buildings can be halved, but energy performance analysis must be integral to the entire design process. This imperative has led the authors to propose that architecture, engineering and science should be syncretized in the design process. This syncretization shares some features of the rhizomatic approach introduced by Deleuze and Guattari (2007). In rhizomatic systems all points can be, and should be connected. A rhizome can be considered as a space that develops, not from a point but from milieux. In the expansion of a rhizome, elements of the system do not follow tracings of other elements but they form a map of new vistas. Likewise, a syncretic approach is oblivious to the traditional boundaries between architecture, engineering and science. Syncretization has the potential to enrich the intellectual lives of architects, scientists and engineers, and it would have profoundly beneficial performative benefits.
keywords Syncretic, rhizome architecture, engineering, sustainability, education
series CAAD Futures
type poster
last changed 2009/07/08 22:12

_id sigradi2009_974
id sigradi2009_974
authors Cardoso, Eduardo; Branca Freitas de Oliveira
year 2009
title Uso da Tecnologia Computacional como Ferramenta para a Tomada de Decisão no Projeto de EstruturasMetálicas [Use of Computer Technology as a Decision-Making Tool in Metal Structure Projects]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary A world of intense and quick changes has led the society to the Information and Knowledge Age. The use of information technologies leads to deep changes and new processes. Systems and organizations must be prepared for the growing amount and speed of information. The main objective of this work is the application of the computer simulation tools CAD/CAE to help decision-making in architecture and engineering projects, specifically metal structure projects. This work presents the application of the finite element method-based software Abaqus/CAE to analyze and propose possible project solutions to the case study of a metal structure which covers a food court in a shopping mall.
keywords Design; CAD; CAE; Metal Structure; Computacional Simulation
series SIGRADI
email
last changed 2016/03/10 09:48

_id ecaade2009_138
id ecaade2009_138
authors Kozikoglu, Nilüfer; Erdogan, Meral; Nircan, Ahmet Kutsi; Özsel Akipek, Fulya
year 2009
title Collective Design Network: Systems Thinking (Event-Pattern-Structures) and System Dynamics Modelling as a Design Concept and Strategy
doi https://doi.org/10.52842/conf.ecaade.2009.533
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 533-540
summary This paper will relay the initial phase of a collaborative work within partners from the design discipline, systems engineering, and software engineering which deals with the interrelations of “network idea”, “systems thinking”, “collective design”, and “computation”. Vensim– a system dynamics modelling tool developed by Ventana Systems, Inc. in 1992 – has been used in an experimental first year design studio to engage students in systems thinking in the architectural design environment. It has been observed that this tool enabled most students to develop a multi-layered, complex and more controlled design logic and to amplify the cognitive processes at the beginning of the design education. We conclude that in order to fully realize systems thinking in the design process, new ways of integrating parametric design environments and system dynamic modelling environments needs to be investigated.
wos WOS:000334282200064
keywords Design network, system dynamics, dynamic pattern, collectivity, integration
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2009_035
id ecaade2009_035
authors Paio, Alexandra; Turkienicz, Benamy
year 2009
title A Generative Urban Grammar for Portuguese Colonial Cities, During the Sixteenth to Eighteenth Centuries: Towards a Tool for Urban Design
doi https://doi.org/10.52842/conf.ecaade.2009.585
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 585-592
summary This paper main goal is to depict the generative principles of 16th -18th century Portuguese colonial urban design described from its Pythagorean-Euclidean geometrical genesis and correspondent logical rules and operations. These origins were found in Portuguese compendiums and treaties on practical geometry, architectural and military engineering from the sixteenth through the eighteenth century. The study attempts to show that rigorous operative geometrical discourse is inseparable from social knowledge, whereby form is the operative result of abstract mental processes and logical visual reasoning associated to ideas of growth and reproduction of order.
wos WOS:000334282200070
keywords Generative systems, shape grammars, Portuguese urban design, Portuguese geometric knowledge
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2009_000
id cf2009_000
authors Tidafi, Temy; Dorta, Tomás (eds.)
year 2009
title Joining languages, cultures and visions CAADFutures 2009
source Proceedings of the 13th International Conference [ISBN ] Montreal 17-19 June 2009, 902 p.
summary In a world where sustainability, ecology, collaboration and performance are common concerns, “joining” is a keyword, expressing the idea of an integration of knowledge, efforts and processes aimed at a better future. The CAADFutures 2009 conference thus intends to join professional and scientific reflections, with the notable input of new disciplines that are also concerned with digital design, such as industrial design and civil engineering. As a result, a vivid dialogue is established between different cultural approaches, computational methods and philosophical positions. The field of computer-aided design is faced with many challenges. CAADFutures 2009 addresses the search for new paradigms for sustainable design, the issues derived from the “digital thinking” embedded in current CAD systems as opposed to the needed “design thinking”, and many more pressing questions such as those of heritage, advanced geometry and parametric design, CAD education, virtual environments, interaction and new technologies, simulation, building performance, rapid prototyping, management, collaboration and ideation.
series CAAD Futures
type normal paper
email
last changed 2010/01/14 07:09

_id acadia09_216
id acadia09_216
authors Wiebe, Kimberly; Kensek, Karen; Schiler, Marc
year 2009
title SonoranSystems: Building Simulation Modeling Using a Crassulacean Acid Metabolism Analogy
doi https://doi.org/10.52842/conf.acadia.2009.216
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 216-225
summary Biomimicry is one source of inspiration for innovation in the passive thermal design of buildings and of strategies that decrease the need for auxiliary heating and cooling systems. This paper explores the potential for using analogies drawn from Crassulacean acid metabolism (CAM) to create a software program that simulates selected building materials to predict temporal building temperature variations.
keywords Simulation, performance, solar, thermal design, parametric design
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:57

_id caadria2009_111
id caadria2009_111
authors Biswas, Tajin; Ramesh Krishnamurti and Tsung-Hsien Wang
year 2009
title Framework for Sustainable Building Design
doi https://doi.org/10.52842/conf.caadria.2009.043
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 43-52
summary For sustainable building design, computational tools, mostly in the form of simulations, are employed to determine loads and to predict systems performance typically in terms of energy use. Currently, sustainability, in the building domain, is judged by a rating system. Design choices are validated, by measuring against one. The objective of the framework is to provide a general approach to processing the informational needs of any rating system, by identifying, categorizing and organizing relevant data requirements. Aspects of sustainability that designers deal with intuitively will have a structured guideline and gauge as one selects a rating system of choice.
keywords Sustainable design: rating system; framework; building information model
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2009_1180
id sigradi2009_1180
authors Neves, Isabel Clara
year 2009
title Aproximações da Arquitectura à Biologia: Levantamento interpretativo de experimentações contemporâneas [Biology approximations in Architecture: Interpretative survey of contemporary experiments]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary It is appropriate to investigate the potential analogies between architecture and biology enabled by the use of digital processes, thereby testing the effectiveness of the application of biological principles to the lifecycle of buildings. The aim of this paper is to understand the way architects integrate and develop different biological approaches to architecture, by mapping the present situation and identifying the trends for future developments. Three major approaches were identified: biomimetics, bionics and biotechnology. The use of biological knowledge and technology in architecture, could pave the way for solutions to current problems, such as energy shortage, climate change, and lifestyle diversity.
keywords Architecture; technology; biomimetics; bionics; biotechnology
series SIGRADI
email
last changed 2016/03/10 09:56

_id acadia13_109
id acadia13_109
authors Thün, Geoffrey; Velikov, Kathy
year 2013
title Adaptation as a Framework for Reconsidering High-Performance Residential Design: A Case Study
doi https://doi.org/10.52842/conf.acadia.2013.109
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 109-118
summary This paper outlines an approach to adaptive residential design explored through recent research and an executed prototype, the North House project (2007-2009), undertaken through an interdisciplinary collaboration of researchers and students from the University of Waterloo, Ryerson University and Simon Fraser University in concert with professional and industry partners. This project aimed to develop a framework for the delivery of adaptive detached residential buildings capable of net-zero energy performance in the temperate climate zone, or the near north. Within this project, the term “adaptive” is developed across several tracts of conceptualization and execution including site and climatically derived models for building material composition and envelope ratios, environmentally-responsive kinetic envelope components, intelligent HVAC controls and interactive interface design aimed at producing co-evolutionary behaviors between building systems and inhabitants. A provisional definition of adaptive architecture is outlined to address this range of considerations that calls into question the stable image of domestic architecture and its relationship to energy and contemporary assumptions regarding sustainable design. This paper also outlines computational approaches to design optimization, distributed building systems integration and the human-controls interfaces applicable to the home’s ecology of physical and information technologies.
keywords next generation technology, responsive buildings, high performance envelopes, sensing and feedback, passive and active systems, energy modeling, user interface
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id 1042
id 1042
authors Tsai, J J-H and Gero JS
year 2009
title Unified Energy-Based Qualitative Representation for Building Analysis
source in J McDonnell and P Lloyd (eds), About: Designing. Analysing Design Meetings, CRC Press, pp. 213-229.
summary Currently, when designers develop a building design project, different representations are used for different building subsystems, such as spatial system, electrical system, lighting system, hydraulic system and HVAC. These representations are mainly used in the final design documentation stage. This book presents a qualitative approach to the development of a unified energy-based representation for building analysis called qualitative Archi Bond Graphs (QABGs). QABGs integrate different representations in the architectural domain into a unified representation. They can be applied in the conceptual, intermediate, and final building design stages. Combining graphical representations and qualitative equations, QABGs are applicable for building simulation and analysis for building dynamics in the space-people system and the building energy systems, and for energy interactions between the space-people system and the building energy systems.
series book
type normal paper
email
more http://www.amazon.com/Energy-based-Qualitative-Representation-Building-Analysis/dp/3639165470/ref=sr_1_1?ie=UTF8&s=books&qid=1248448107&sr=1-1
last changed 2009/09/11 18:22

_id sigradi2021_50
id sigradi2021_50
authors Albuquerque, Dilson and Andrade, Max
year 2021
title The Impacts of Collaboration and Cordination of Architectural and Engineering Projects Developed with BIM in Reducing Design Interferences
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 783–794
summary This paper addresses the importance and development of cultural transformations involving the design process in architecture and the advent of Building Information Modeling (BIM) in civil construction activities and how its implementation in a coordinated, collaborative and interoperable way contributes to a diagnosis of Clash Detection between diferentes design projects, before building construction, saving excessive costs and rework. Taking as its main reference the BIM Maturity Matrix of Succar (2009), the proposed BIM Project Integration Maturity Matrix contributes to the awareness of bringing designers and builders closer to design activities, to encourage the integration of design processes involving the building, to consolidate an environment of ease of communication between participants, the organization of documentation and, above all, prioritize the compatibility between projects to avoid conflicts, excess costs and rework, resulting in a higher quality of the final project.
keywords Coordenaçao de projetos, detecçao de interferencias, Building Information Modeling, matriz de avaliaçao, projeto integrado
series SIGraDi
email
last changed 2022/05/23 12:11

_id ijac202119302
id ijac202119302
authors BuHamdan, Samer; Alwisy, Aladdin; Bouferguene, Ahmed
year 2021
title Generative systems in the architecture, engineering and construction industry: A systematic review and analysis
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 226–249
summary Researchers have been extensively exploring the employment of generative systems to support design practices in the architecture, engineering and construction industry since the 1970s. More than half a century passed since the first architecture, engineering and construction industry’s generative systems were developed; researchers have achieved remarkable leaps backed by advances in computing power and algorithms’ capacity. In this article, we present a systematic analysis of the literature published between 2009 and 2019 on the utilization of generative systems in the design practices of the architecture, engineering and construction industry. The present research studies present trends, collaborations and applications of generative systems in the architecture, engineering and construction industry in order to identify existing shortcomings and potential advancements that balance the need for theory development and practical application. It provides insightful observations that are translated into meaningful recommendations for future research necessary to progress the incorporation of generative systems into the design practices of the architecture, engineering and construction industry.
keywords Generative systems, architecture, engineering and construction industry, performative design, generative design, systematic literature review, future directions
series journal
email
last changed 2024/04/17 14:29

_id cf2009_585
id cf2009_585
authors E. Swarts, Matthew; A. Sheward, Hugo
year 2009
title Using multi-level virtual environments as a medium for conducting design review through a shared IFC dataset
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 585- 597
summary For a long time the Architecture-Engineering-Construction (AEC) community has had difficulty in communicating the content of their work, not only the various specialties involved, but also to their clients. Studies (Doorst and Cross 2001; Bakhtin 1994) suggest the importance of multi-role collaborative environments in supporting design processes. We are developing a Multi Level Design Review Tool for the AEC industry which allows multiple actors to congregate and interact as agents around a central Building Model. It merges real-time virtual 3D visualization technologies with Industry Foundation Classes (IFC) to support both high levels of semantic content and seamless interoperability.
keywords Design review, virtual environment, interoperability
series CAAD Futures
email
last changed 2009/06/08 20:53

_id acadia09_255
id acadia09_255
authors Frumar, Jerome; Zhou, Yi Yi
year 2009
title Kinetic Tensegrity Grids with 3D Compressed Components
doi https://doi.org/10.52842/conf.acadia.2009.255
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 255-258
summary This paper details a series of preliminary explorations into the concept of kinetic tensegrity grids that can respond to stimuli by changing their shape, porosity, and transparency. The research presented explores double-layer tensegrity grids that utilize 3D “compressed” components. A case study demonstrates their applicability to the formation of sophisticated building envelopes that can actively or passively respond to changes in the environment. A computational form-finding tool is introduced to study design variations in real time. This tool is shown to expand the design spectrum by supporting increased complexity and revealing unexpected design potential. This research is significant as it outlines a practical methodology for conceiving responsive building systems. In particular, it illustrates an approach that synthesizes design concerns with engineering and fabrication goals.
series ACADIA
type Short paper
email
last changed 2022/06/07 07:50

_id ecaade2009_193
id ecaade2009_193
authors Frumar, Jerome; Zhou, Yiyi
year 2009
title Beyond Representation: Real Time Form Finding of Tensegrity Structures with 3d ‘Compressed’ Components
doi https://doi.org/10.52842/conf.ecaade.2009.021
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 21-30
summary Tensegrity structures are of interest to architecture and engineering as a practical means to explore lightweight and rapidly deployable modular structures that have a high degree of geometric freedom and formal potency. The notion of tensegrity structures with 3D ‘compressed’ components is introduced and their feasibility is demonstrated through selected physical models. Attempts to further explore the architectural potential of tensegrity structures within a computational environment have proven difficult, as they are statically indeterminate and require form finding procedures to “find a geometry compatible with a self-stress state” (Motro 2002). An overview of tensegrity ‘capable’ software that can be used for architectural design is followed by a discussion that introduces an additional computational method based on particle-spring systems. This approach enables real time manipulation of tensegrity networks. Two projects that utilize this unique tool are described.
wos WOS:000334282200001
keywords Form finding, particle-spring, tensegrity, 3D compressed component
series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_973607 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002