CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 590

_id ecaade2009_158
id ecaade2009_158
authors Matcha, Heike; Quasten, Gero
year 2009
title A Parametric-Typological Tool: More Diversity for Mass Produced Single Family Homes Through Parametrized Design and Customized Mass Production
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 409-416
doi https://doi.org/10.52842/conf.ecaade.2009.409
wos WOS:000334282200049
summary We present a research program in which a plug-in tool for the generation of vertically stacked single family homes is developed and implemented in the software Autodesk Revit Architecture. The parametrized typology will provide for more variety, individuality and appropriateness in the homes themselves and also in the urban structures created by them. CAAM methods furthermore drastically reduce the production costs. The research is government-funded and sponsored by the building and software industry with the aim to both extend the functionality of an existing software package and to build a prototype urban development.
keywords Plug-In Tool, parametrized typology, CAAM methods, design tool development, new design concepts and strategies, mass customization
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia09_144
id acadia09_144
authors Miller, Nathan
year 2009
title Parametric Strategies in Civic Architecture Design
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 144-152
doi https://doi.org/10.52842/conf.acadia.2009.144
summary Using several NBBJ civic projects as case studies, this paper provides an overview of how NBBJ’s Los Angeles design studio is leveraging parametric and generative processes for the design of projects such as stadiums and exposition halls. A combination of ambitious intent and fast project schedules necessitates the use of advanced parametric tools to quickly solve complex problems, generate unique features, and automate parts of the design process. Designers will utilize digital tools for a variety of purposes, which can be classified under two general categories. The first and most common application of the technology is within the category of rationalization and optimization. The tool, in this case, is limited to the role of a production device that aids the designer in efficiently solving complex design problems. In more unique projects, the advanced technology acts as a generative tool and is an integral part of a working design methodology. In this case, the design technology becomes more than just a tool at the designer’s disposal. Rather, it has the potential to act as a critical lens for identifying new possibilities in the architecture.
keywords Parametric design, complexity, stadium, scripting
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:58

_id acadia09_259
id acadia09_259
authors O’Brien, William
year 2009
title Approaching Irreducible Formations
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 259-263
doi https://doi.org/10.52842/conf.acadia.2009.259
summary This essay codifies and extends contemporary conceptions of systemic organization using architectural case studies within the context of 1950’s space-time. Given the dominance of certain concerns within the profession of architecture during that time—prefabrication and strict modularity—the selected case studies reveal unprecedented characteristics which anticipate current developments in algorithmic and parametric formation. The projects in question demonstrate sophisticated strategies for differentiated part-to-whole relationships which predate contemporary organizational systems, now derived with the aid of digital computation. Their importance to current architectural discourse lies in distinguishing the manner in which they manifest notions of space-time, including transformation, continuity and modulation, as architects increasingly operate within dexterous and interconnected environments.
keywords Geometry, critique, history
series ACADIA
type Short paper
email
last changed 2022/06/07 08:00

_id 5362
id 5362
authors Roudavski, Stanislav
year 2009
title Towards Morphogenesis in Architecture
source Roudavski, Stanislav. "Towards Morphogenesis in Architecture." International Journal of Architectural Computing 7, no. 3 (2009): 345-74.
summary Procedural, parametric and generative computer-supported techniques in combination with mass customization and automated fabrication enable holistic manipulation in silico and the subsequent production of increasingly complex architectural arrangements. By automating parts of the design process, computers make it easier to develop designs through versioning and gradual adjustment. In recent architectural discourse, these approaches to designing have been described as morphogenesis.This paper invites further reflection on the possible meanings of this imported concept in the field of architectural designing. It contributes by comparing computational modelling of morphogenesis in plant science with techniques in architectural designing. Deriving examples from case-studies, the paper suggests potentials for collaboration and opportunities for bi-directional knowledge transfers.
keywords biology; architecture; generative design; parametric design; digital architecture; morphogenesis; digital morphogenesis; morphogenetic strategies; digital creativity; form-finding
series journal paper
type normal paper
email
more http://www.crida.net/stan/Downloads/Roudavski_Towards_Morphogenesis_in_Architecture_09.pdf
last changed 2009/09/15 14:35

_id acadia09_52
id acadia09_52
authors Sabin, Jenny E
year 2009
title Code, Context, and Perception: Matrix Architecture and the Architect Weaver
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 52-57
doi https://doi.org/10.52842/conf.acadia.2009.052
summary Recent technological leaps in data production and computation have afforded both architects and scientists an extraordinary ability to generate information and complex form. Rather than deal in the composition of wholes, architects specializing in generative and parametric design strategies—more formally known as design computation—have adopted a bottom-up approach to the negotiation of constraints within the design process. This renewed interest in complexity has offered alternative methods for investigating the interrelationships of parts to their wholes, and emergent self-organized pattern systems at multiple scales and applications. The contemporary architecture avant-garde has provided many examples that showcase the proven power such digital tools afford the designer, inspiring and leading to the generation of beautiful form. But what are our next steps in addressing complexity? How should architects with expertise in design computation situate themselves in larger design dialogues concerning pressing topics such as those concerning our environment? Biology provides useful systems-based models for architects to study to understand how context specifies form, function, and structure.
keywords Design systems, biology, complexity, self-organized systems
series ACADIA
type Normal paper
last changed 2022/06/07 07:56

_id acadia09_216
id acadia09_216
authors Wiebe, Kimberly; Kensek, Karen; Schiler, Marc
year 2009
title SonoranSystems: Building Simulation Modeling Using a Crassulacean Acid Metabolism Analogy
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2009.216
summary Biomimicry is one source of inspiration for innovation in the passive thermal design of buildings and of strategies that decrease the need for auxiliary heating and cooling systems. This paper explores the potential for using analogies drawn from Crassulacean acid metabolism (CAM) to create a software program that simulates selected building materials to predict temporal building temperature variations.
keywords Simulation, performance, solar, thermal design, parametric design
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:57

_id sigradi2009_792
id sigradi2009_792
authors Flório, Wilson
year 2009
title Modelagem Paramétrica em Arquitetura: Estratégias para Materializar Formas Complexas [Parametric Modeling in Architecture:strategies to materializing complex shapes]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary This research investigates the relation between parametric modeling (PM) and digital fabrication (DF) of complex shapes in architecture. The complexity involving the recent designs in architecture has demanded new procedures, as much during the conception as to make possible its construction. Thus, the PM and the DF have allowed architects and engineers conceiving, detailing and constructing complex structures with more precision and faster. In this paper, the author contributes for a discussion in this field, still incipient in Brazil, particularly in the process of PM teach-learning.
keywords Parametric Modeling; Digital Fabrication; Construction; Contemporary Architecture; Complexity
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia09_90
id acadia09_90
authors Fox, Michael
year 2009
title Flockwall: A Full-Scale Spatial Environment with Discrete Collaborative Modules
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 90-97
doi https://doi.org/10.52842/conf.acadia.2009.090
summary The paper highlights a built example of a human-scale spatial environment composed of discrete collaborative modules. The primary goals were to develop and understand strategies that can be applied to interactive architecture. The design and construction were carried out in an academic context that was displayed to a public audience of approximately 200,000 people over the course of three days. In addressing the performance parameters of the prototype, the concept focused on several key strategies: 1) geometry 2) movement 3) connections 4) scale and 5) computational control, and human interaction. The final objective of the approach was to create an innovative design that was a minimally functional spatial environment with the capability for evolving additional multi-functionality. Heavy emphasis was placed on creating a full-scale environment that a person could walk through, interact with, and experience spatially.
keywords Geometry, design logic, flock behavior, prototype, fabrication, responsive systems
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:50

_id caadria2009_151
id caadria2009_151
authors Fox, Michael A.
year 2009
title Redesigning The Brick
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 381-390
doi https://doi.org/10.52842/conf.caadria.2009.381
summary This research examines the value of “redesigning the brick,” in creating a new vocabulary of basic architectural building blocks with autonomous reconfigurable robotics. The paper highlights several built examples by the author of robotic architectural environments and the work of architecture students whereby individual modules were created within the context of a design studio and applied to scenarios of space making at various scales. Several strategies for decentralized control were explored dictating how individual parts of a system should behave and how local interactions between individual modules can lead to the emergence of global behaviour. The students schematically designed selfreplicating models which would allow for each object to be able to attach, detach, and reconfigure according to predetermined computational logic. The projects successfully demonstrate various strategies for mechanical design, locomotion and control.
keywords Interactive Architecture: Modular Robotics; Robotics; Kinetics; Biomimetics
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2009_771
id cf2009_771
authors LaBelle, Guillaume; Nembrini, Julien and Huang, Jeffrey
year 2009
title Programming framework for architectural design ANAR+: Object oriented geometry
source T. Tidafi and T. Dorta (eds) Joining Languages, Cultures and Visions: CAADFutures 2009, PUM, 2009, pp. 771- 785
summary From the recent advent of scripting tools integrated into commercial CAAD software and everyday design practice, the use of programming applied to an architectural design process becomes a necessary field of study. The presented research explores the use of programming as explorative and reflexive medium (Schön, 1983) through the development of a programming framework for architectural design. Based on Java, the ANAR+ library is a parametric geometry environment meant to be used as programming interface by designers. Form exploration strategies based on parametric variations depend on the internal logic description, a key role for form generation. In most commercial CAD software, geometric data structures are often predefined objects, thus constraining the form exploration, whereas digital architectural research and teaching are in need for an encompassing tool able to step beyond new software products limitations.
keywords Parametric design, programming language, architectural Geometry, pro-cessing
series CAAD Futures
email
last changed 2009/06/08 20:53

_id ecaade2009_169
id ecaade2009_169
authors Narahara, Taro
year 2009
title Bottom-up Design Inspired by Evolutionary Dynamics: Adaptable Growth Model for Architecture
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 391-398
doi https://doi.org/10.52842/conf.ecaade.2009.391
wos WOS:000334282200047
summary Development of flexible and adaptable architecture has been a perennial theme among practitioners. Design of universal subunits that could tolerate technological, environmental, and circumstantial changes over time is a challenge. In this paper, I would like to introduce several generative design strategies inspired by ideas from evolutionary dynamics and discuss potential benefits of the methods for designs of emerging future building types.
keywords Evolutionary dynamics, bottom-up design, DLA
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia09_287
id acadia09_287
authors Senagala, Mahesh; Vermillion, Joshua
year 2009
title An Inconvenient Studio
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 287-290
doi https://doi.org/10.52842/conf.acadia.2009.287
summary The authors propose that technologically empowered design innovations, able to confront the many global challenges faced presently and in the future, require new pedagogical and organizational strategies in the design studio. The paper describes a novel approach to conducting An Inconvenient Studio and the unique learning experience that led to original active and reactive inventions. Situated technologies / physical computing played a central role in enabling An Inconvenient Studio. Five projects that came out of the studio will be briefly described: Legobotics, Bloom, Twist, Arcus Animus, and Morpholuminescence.
series ACADIA
type Short paper
email
last changed 2022/06/07 07:56

_id acadia09_248
id acadia09_248
authors Verde, Marco
year 2009
title Multiperformative Efficient Systems (MES) Towards System Thinking
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 248-251
doi https://doi.org/10.52842/conf.acadia.2009.248
summary In order to address the demands of an ever-increasingly data-driven architectural practice, the designer must become an interdisciplinary specialist. Therefore, it is necessary to rethink new strategies in order to establish a robust connective tissue between disciplines and specializations. Bringing new digital productions to the scale of a real building implies the need for radical innovation in non-standardized building solutions. This paradigm shift implies rethinking buildings as systems rather than the juxtaposition of optimized and monofunctional layers. This paper is rooted in a personal research agenda based in Systems Thinking, currently under development at Hyperbody, the research group
series ACADIA
type Short paper
email
last changed 2022/06/07 07:58

_id ecaade2009_000
id ecaade2009_000
authors Çagdas, Gülen; Çolakoglu, Birgül (eds.)
year 2009
title COMPUTATION: The New Realm of Architectural Design
source 27th eCAADe Conference Proceedings [ISBN 978-0-9541183-8-9], Istanbul (Turkey) 16-19 September 2009, 854 p.
doi https://doi.org/10.52842/conf.ecaade.2009
summary In the field of architecture, computational design has emerged as sub-discipline having a multidisciplinary nature and using computing methods and capabilities to understand and solve architectural design problems. Computational design is based on computational thinking that includes a range of mental tools in solving problems, designing systems, and understanding human behavior. It has drawn on the concepts of mathematics and computer science. Computational design elements are derived from both theoretical science and experimental design in such a way that its mechanism relies heavily on mathematical logic, but once built, experimentation is done by varying one parameter at a time to study individual changes. It is a design model, not design itself. Computational design involves applying appropriate computational mechanisms, algorithms, or methods to architecture in order to solve design problems and develop design applications. This process creates systems that can be used as design tools for exploring and forming entirely new design concepts and strategies. Over the next decade, computation will have a great impact on design world. It will solve more complex design problems with greater accuracy and be applied by more designers more routinely—it will go deeper and wider. However, the greatest change that it will bring is the breaking down of barriers between scientific domains and design, enabling real “design science.” Computation is already a key driver in “joined-up” research. It forces scientists and designers to think deeper and wider. Some people have considered it to be the enemy of creativity. In their opinion, designers simply must do things rather than think about what they are doing and how they are doing it. Deeper thinking is associated with scientific rather than designer thinking. The fact is that some of the most innovative and creative work is being done by people who have developed computational thinking skills and know other disciplines along with computing. The theme of eCAADe 2009 conference, Computation: The New Realm of Architectural Design, is devoted to exploring the ramifications of this view for the domain of design: research, education, and practice. We believe that the most intriguing research questions that will emerge from the advent of new and more powerful computational devices—and from the design tools that make use of them—will be in the realm of developmental design science.
series eCAADe
email
last changed 2022/06/07 07:49

_id ascaad2009_mai_abdelsalam
id ascaad2009_mai_abdelsalam
authors Abdelsalam, Mai
year 2009
title The Use of the Smart Geometry through Various Design Processes: Using the programming platform (parametric features) and generative components
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 297-304
summary The emergence of parametric generative design tools and prototyping manufacturing technology led to radical changes in architectural morphologies. This change increased the opportunity to develop innovative smart geometries. Integrating these algorithms in the parametric softwares led to variations in building design concepts increasing alternatives and decreasing the repetitive work previously needed in conventional CAD software. The chosen software in this research is Generative Components (GC). It is a software design tool for an associative and parametric design platform. It is tested for using Global Variables with associative functions during the concept creation and form GC comprises features. The results presented in this research may be considered an introduction to the smart geometry revolution. It deals with the generative design which applied in the design process from conceptual design phase, defining the problem, exploring design solutions, then how to develop the design phases. Office building is a building type which encourages new forms that needs computational processes to deal with repetitive functions and modular spaces and enclosed in a flexible creative structural skin. Generative design helps the office buildings to be arranged, analysed, and optimized using parameters in early stages in design process. By the end of the research, the use of the smart geometry in a high rise office building is defined and explained. The research is divided into three parts, first a summary of the basic theories of office buildings design and the sustainable requirements that affect it, and should be integrated. Secondly, the previous experiences in generating office buildings by Norman foster and Sergio Araya. At last, a case study is proposed to test and evaluate the use of the parametric generative methodology in designing an office building with specific emphasis on the function, environmental aspects and form generation using Generative Components (GC) Software.
series ASCAAD
email
last changed 2009/06/30 08:12

_id sigradi2009_957
id sigradi2009_957
authors Baerlecken, Daniel Michael; Gernot Riether
year 2009
title From texture to volume: an investigation in quasi-crystalline systems
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The relation between texture, pattern and massing is a fundamental question in architecture. Classical architecture, as Leon Battista Alberti states in “De re aedificatoria” (Book VI, Chapter 2), is developed through massing and structure first; texture is added afterwards to give the bold massing and structure beauty. Only the ornamentation adds pulcritudo to the raw structure and massing. Rather than starting with a volume and applying texture afterwards, the Digital Girih project started with textural operations that informed the overall volume later. The stereometric, top-down methodology is questioned through the bottom-up methodology of the Girih project. Girih lines of traditional Islamic patterns were used as a starting point. The aspect of 3-dimensionality was developed analogue as well as digital, using the deformability of different materials at various scales and digital construction techniques as parameters. The flexibility within the Girih rules allowed the system to adapt to different tasks and situations and to react to different conditions between 2- and 3- dimensionality. The project in that way explored a bottom-up process of form generation. This paper will describe the process of the project and explain the necessity of digital tools, such as Grasshopper and Rhino, and fabrication tools, such as laser cutter and CNC fabrication technology, that were essential for this process.
keywords Generative Design; Parametric Design; Tessellation; Form Finding; Scripting
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2009_137
id caadria2009_137
authors Baerlecken, Daniel; Judith Reitz
year 2009
title Combinatorial Productivity
source Proceedings of the 14th International Conference on Computer Aided Architectural Design Research in Asia / Yunlin (Taiwan) 22-25 April 2009, pp. 761-770
doi https://doi.org/10.52842/conf.caadria.2009.761
summary The paper investigates knotting techniques as a method for generating wall systems. The essential matter of the paper is to demonstrate the potential of knotted, algorithmic architecture through different research studies, which share the knotting of linear elements as a common methodology for design development. Combinatorial Productivity implies that by combining linear elements hidden properties of a system emerge and thereby the system becomes productive.
keywords Generative Design; Design methodology; Parametric Form Generation; Knot Theory; Scripting
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia09_226
id acadia09_226
authors Benton, Sarah
year 2009
title reForming: Responding to Our Land in Crisis
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 226-233
doi https://doi.org/10.52842/conf.acadia.2009.226
summary An environmental crisis in Australia in early 2009 prompted the architectural design work considered in this paper. Bushfires ravaged the Victorian hinterland, destroying lives and families. The crises inspired me to explore the ACADIA 2009 conference theme, reForm(): how technologies transform the ways in which buildings and spaces perform, act and operate. This paper explores architectural design in distressed contexts and some design technologies used to formalize new housing development and respond to the environmental crisis.
keywords Parametric design, environment, design logic, landscape, biomimicry
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:54

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
doi https://doi.org/10.52842/conf.ecaade.2011.751
wos WOS:000335665500087
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_199724 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002