CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id ecaade2010_054
id ecaade2010_054
authors Wurzer, Gabriel; Fioravanti, Antonio; Loffreda, Gianluigi; Trento, Armando
year 2010
title Function & Action: Verifying a functional program in a game-oriented environment
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.389-394
doi https://doi.org/10.52842/conf.ecaade.2010.389
wos WOS:000340629400041
summary The finding of a functional program for any kind of building involves a great amount of knowledge about the behavior of future building users. This knowledge can be gathered by looking at relevant building literature (Adler, 1999; Neufert and Neufert, 2000) or by investigating the actual processes taking place in similar environments, the latter being demonstrated e.g. by (Schütte-Lihotzky, 2004) or new functionalist approaches of the MVRDV group (Costanzo, 2006)). Both techniques have the disadvantage that the architect might assume a behavior which is seldom experienced in real life (either through lack of information or by failing to meet the building user’s expectations). What is needed is a verification step in which the design is tested on real users. We have devised a game-like environment (Figure 1a) in which it is possible to capture the behavior of future building users in order to verify the relevance of the design even at a very early stage. As result of applying our approach, we can find previously overlooked usage situations, which may be used to further adapt the design to the user’s needs.
keywords Requirements checking; Participative design
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

No more hits.

HOMELOGIN (you are user _anon_722348 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002