CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 434

_id sigradi2010_320
id sigradi2010_320
authors Ariel, Moreira Alejandro
year 2010
title Modelos digitales de representación de lo real como estrategia de management alternativo en la práctica profesional arquitectónica [Digital models of representation of reality as an alternative management strategy in architectural practice]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 320-323
summary An architectural project is designed in weeks or months—sometimes in places far from the construction site—and is built in years. The challenge of design is more than creating a three - dimensional digital (3D) model that includes all available information; visualization and communication throughout the entire process is crucial due to the global nature of contemporary architectural practice. This study asks: What tool would satisfy this need for communication? The objective of this paper is to explore these issues and propose an answer to this query based on flexible management to solve them.
keywords technological integration, BIM, IPD, knowledge management, digital model of reality
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2010_014
id caadria2010_014
authors Lin, Chieh-Jen and Mao-Lin Chiu
year 2010
title Spatial topology retrieval: a visual approach for representing and retrieving spatial topology in a case library
doi https://doi.org/10.52842/conf.caadria.2010.147
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 147-154
summary This paper aims to develop a visual tool named Spatial Topology Retrieval (STR) for integrating a physical-based spatial allocation tool, which offers a visual interactive interface for architectural space layout in early design stage, into an online case library, which is based on rational database technology with ontology-based authoring tools of metadata of case features. STR services the case library as a tool for representing and retrieving the plane views of a design case.
keywords Case-based design; case library; knowledge representation; implicit knowledge; spatial topology
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadiaregional2011_019
id acadiaregional2011_019
authors Peters, Troy
year 2011
title Simulation by Design: A Parametric Design Tool for Zero Energy Buildings
doi https://doi.org/10.52842/conf.acadia.2011.x.q2q
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary To address the shortcomings of integrating building simulation in architectural design and to make it more appealing to students, a simple interface to Energyplus was created. This interface models a simple rectangular building that is passively heated by direct gain and cooled by ventilation. A simple photovoltaic interface has also been added to supply fan energy. This tool has an OpenGL modeler for visualization and uses Energyplus for calculations. The interface will run a full year simulation and graph the results. The results are reported in a yearly graph that shows the outdoor and indoor temperature. The indoor temperature range is based on adaptive comfort level. The interface was tested and used in an introductory design studio in order to comply with the 2010 imperative. The students simulated a simple box and changed the buildings parameters until the building fell within the adaptive comfort zone for most of the year. The climate simulated was Chicago, IL. Using these parameters the students then designed the building. The resulting designs show that even though the students were restricted in parameters, such as window percentage, they were still able to creatively design unique buildings that use zero to negative net energy for heating and cooling in a climate such as Chicago.
series ACADIA
last changed 2022/06/07 07:49

_id acadia10_88
id acadia10_88
authors Steinfeld, Kyle; Bhiwapurkar, Pravin; Dyson, Anna; Vollen, Jason
year 2010
title Situated Bioclimatic Information Design: a new approach to the processing and visualization of climate data
doi https://doi.org/10.52842/conf.acadia.2010.088
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 88-96
summary Currently, most approaches to graphic evaluative frameworks (GEFs) for the early-stage evaluation of bioclimatic design strategies adopt a design-tool metaphor, wherein a battery of analytical routines is performed by a software tool based upon a standardized weather file from which a stock set of graphic material is produced. In seeking to evaluate a broad range of climates and to address a wide variety of passive design strategies, existing climate visualization and evaluation tools position themselves far outside of the context of a situated design problem. Remaining agnostic to the particularities of site, program, tectonic system, and material behavior these tools become, by definition, generic. As a consequence, while such design-tools can be effective in evaluating particular relationships between environmental resource, demand profile, and built-system, they maintain a potential to be rendered ineffective in any outlying cases not specifically anticipated by their authors . Situated Bioclimatic Information Design (SBID) presents an alternative approach that targets a class of design strategies prominent among these outlying cases: those highly responsive to negotiation between the continually fluctuating resources within microclimates and the fluctuating demand profile of the building program. Using a custom-built weather data parser a number of diagrams and data visualizations have been produced under this approach. These visualizations are not only useful in and of themselves for aligning design strategies to specific contexts, but they also illustrate the foundations of a larger theoretical framework for the processing and visualization of climatic data for effective utilization of bioclimatic flows.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ascaad2010_039
id ascaad2010_039
authors Almusharaf, Ayman M.; Mahjoub Elnimeiri
year 2010
title A Performance-Based Design Approach for Early Tall Building Form Development
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 39-50
summary This paper presents a methodological interactive design approach within which structure is integrated into tall building form development. The approach establishes a synergy between generative and analytical tools to allow for parallel interaction of the formal and structural design considerations during the conceptual design phase. An integration of the associative modeling system, Grasshopper, and the structural analysis tool, ETABS was established, and a bi-directional feedback link between the two tools was initiated to guide the iterative from generation process. A design scenario is presented in this paper to demonstrate how the parametric generation and alteration of architectural form can be carried out based on instant feedback on the structural performance. Utilizing such a tool, architects can not only develop improved understanding of structural needs, but also realize their formal ideas structurally and materially.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ascaad2010_213
id ascaad2010_213
authors Babsail, Mohammad; Mahjoub Elnimeiri
year 2010
title A Computer Process for Investigating Wind Power Production in Building Integrated Wind Turbines
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 213-220
summary This paper reports on the computer process to be used in an ongoing research to investigate the effect of architectural parameters of tall buildings on the incorporation of wind turbines. The process combines a generative modeling tool (Grasshopper) and a performance based CFD tool (Virtualwind). The process is demonstrated on three typical tall building plan configurations. The wind speed was simulated at certain locations to demonstrate the ability of tall buildings to enhance the wind speed and thus maximize the energy produced by wind turbines located between twin towers. The process to predict wind power production is lastly listed.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ijac20108301
id ijac20108301
authors Chok, Kermin; Mark Donofrio
year 2010
title Abstractions for information based design
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 233-256
summary This paper discusses how live linkages between parametric geometry, structural analysis and optimization can be leveraged to explore an architectural massing from different perspectives of optimum assuming a set of cost and value characteristics. Broad performance measures such as program area, cladding surface and structural quantities were computed for each geometry variation and collected. Optimums from different perspectives (structure, developer, designer) were extracted for each height category and compared. To further inform and engage stakeholders, a variety of visualization and filtering techniques have been implemented. These new techniques and associated distillation of data aids the design team in understanding the design space. A script based approach towards geometry and data management has led to a shift towards active option evaluation and a more interactive approach to form exploration. A generic workflow for structural analysis, design and optimization has been implemented and this ability to engineer at a greater velocity will move the design profession towards a more collaborative and information based design environment.
series journal
last changed 2019/05/24 09:55

_id acadia10_258
id acadia10_258
authors Doumpioti, Christina; Greenberg, Evan L.; Karatzas, Konstantinos
year 2010
title Embedded Intelligence: Material Responsiveness in Façade Systems
doi https://doi.org/10.52842/conf.acadia.2010.258
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 258-262
summary This paper presents recent research for new mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on insect and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The proposed façade system uses integrated sensors and actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to manufacturing methods and material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli, and ultimately, effective performance of the whole system.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ascaad2010_117
id ascaad2010_117
authors El Gewely, Maha H.
year 2010
title Algorithm Aided Architectural Design (Aaad)
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 117-126
summary Algorithm Aided Architectural Design (AAAD) is considered a second paradigm shift in the Architectural design process after the first one of bridging the conventional design process to the digital realm of design. This paper is divided into two parts, the first part comprehends the Algorithmic Architecture approach of from the point of view of tools, techniques, theories and practice in order to find the Algotecture theories on the map of Digital Architecture. Then, the paper exemplifies an application on Algorithmic Architecture. FALLINGWATER TOOLBOX VERSION 1.0 is a computational design demo tool for architects to aid in the house schematic design phase according to an analytical study of Frank Lloyd Wright's basic design rules and spatial program of his masterpiece; FallingWater House, (Edgar J. Kaufmann family house 1939). These rules have been transferred to algorithms and code thereafter. At a preceding stage, the Graphical User Interface (GUI) was developed using MAXScript 9.0. Using the FALLINGWATER TOOLBOX, infinite number of house prototypes can be generated within few minutes. Although, the FWT is based on a hypothetical design problem of producing prototype alternatives for a new house with the same identity of the Edgar Kaufmann House, the concept of the tool can be applied on a wider range of problems. It may help generating prototype alternative solutions for residential compounds design according to the required constraints.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia20_464
id acadia20_464
authors Elberfeld, Nathaniel; Tessmer, Lavender; Waller, Alexandra
year 2020
title A Case for Lace
doi https://doi.org/10.52842/conf.acadia.2020.1.464
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 464-473.
summary Textiles and architecture share a long, intertwined history from the earliest enclosures to contemporary high-tech tensile structures. In the Four Elements of Architecture, Gottfried Semper (2010) posited wickerwork and carpet enclosures to be the essential origins of architectural space. More recently, architectural designers are capitalizing on the characteristics of textiles that are difficult or impossible to reproduce with other material systems: textiles are pliable, scalable, and materially efficient. As industrial knitting machines join robotic systems in architecture schools with fabrication- forward agendas, much of the recent developments in textile-based projects make use of knitting. In this paper, we propose an alternative textile technique, lacemaking, for architectural fabrication. We present a method for translating traditional lacemaking techniques to an architectural scale and explore its relative advantages over other textiles. In particular, we introduce bobbin lace and describe its steps both in traditional production and at an architectural scale. We use the unique properties of bobbin lace to form workflows for fabrication and computational analysis. An example of computational analysis demonstrates the ability to optimize lace-based designs towards particular labor objectives. We discuss opportunities for automation and consider the broader implications of understanding a material system relative to the cost of labor to produce designs using it.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2010_027
id caadria2010_027
authors Fernando, Ruwan; Robin Drogemuller, Flora Dilys Salim and Jane Burry
year 2010
title Patterns, heuristics for architectural design support: making use of evolutionary modelling in design
doi https://doi.org/10.52842/conf.caadria.2010.283
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 283-292
summary Software used by architectural and industrial designers has shifted from becoming a tool for drafting, towards use in verification, simulation, project management and remote project sharing. In more advanced models, design parameters for the designed object can be adjusted so that a family of variations can be produced rapidly. With the advances in computer aided design (CAD) technology, design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to leverage specialised design knowledge from various discipline domains (known as expert knowledge systems) as well as to support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques in order to monitor a designer’s cognition and intent based on their design history. This will lead to results that impact future work on design support systems which are capable of supporting implicit constraint and problem definition for wicked problems that are difficult to quantify.
keywords Design support; heuristics; generative modelling; parametric modelling; evolutionary computation
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2010_166
id ecaade2010_166
authors Geyer, Philipp; Buchholz, Martin
year 2010
title System-Embedded Building Design and Modeling: Parametric systems modeling of buildings and their environment for performance-based and strategic design
doi https://doi.org/10.52842/conf.ecaade.2010.641
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.641-650
wos WOS:000340629400069
summary The paper proposes Parametric Systems Modeling (PSM) as a tool for building and city planning. The outlined method is based on the Systems Modeling Language (SysML) and is intended for design, dimensioning, and optimization of buildings and cities as systems. The approach exceeds the geometric approach, considers additional information from physics, technology, as well as biology, and provides a basis for multidisciplinary analyses and simulations. Its application aims at the exploration of innovative sustainable design solutions at system level. The proposal of an innovative buildinggreenhouse-city system serves to illustrate the approach. Features of this system are closed water cycles, renewable energy use, thermo-chemical energy storage and transport of energy for heating and cooling purposes on the base of desiccants, as well as recycling of CO2 , accumulation of biomass and related soil improvement.
keywords Parametric systems modeling; Systems design and engineering; Sustainable city system; City-integrated greenhouse
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2010_233
id ecaade2010_233
authors Guerbuez, Esra; Cagdas, Guelen; Alacam, Sema
year 2010
title A Generative Design Model for Gaziantep’s Traditional Pattern
doi https://doi.org/10.52842/conf.ecaade.2010.841
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.841-849
wos WOS:000340629400090
summary This paper describes a research to develop new urban designalternatives for Gaziantep by using fractal based approaches. The aim of the research is not only generating new form alternatives but also considering the continuity of traditional architectural and urban pattern which faces deterioration. Within this study, it is intended to test the applicability of the fractal based generative approaches and explore the potential advantages. The method called CADaFED (Ediz, 2003) is updated to be used in one of the 3d modeling programs, 3DsMax scripting and it is used as an experimental tool in two-day student workshop. The working field is limited as Bey Neighbourhood in Gaziantep for its well-preserved architectural characteristics. In this paper, the outcomes of the student workshop will be evaluated and discussed in the sense of affirmative effects of fractal based design approaches.
keywords Generative design; Fractal based design; Computational architectural design; Traditional pattern
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2010_211
id ecaade2010_211
authors Hemmerling, Marco; Tiggemann, Anke
year 2010
title Emotive Spaces: Spatial interpretations based on the book “Der Ohrenzeuge” by Elias Canetti
doi https://doi.org/10.52842/conf.ecaade.2010.125
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.125-132
wos WOS:000340629400013
summary Focusing on a design methodology that is inspired by emotional conditions rather than rational specifications the paper describes the translation of literature into virtual spaces. In his book „Der Ohrenzeuge“ Elias Canetti describes 50 surreal characters, which were analyzed in the first step due to their anthropological features. The following interpretation of these featuresinto spatial qualities, using visualization software as an expressive medium, wasrealized by the definition of parameters for geometry, light, material and camera settings to achieve a spatial analogy of the given characters. The experimental approach led to a deeper understanding of spatial qualities in respect to atmospheric impressions and triggered at the same time the application of digital tools for an intuitive design process.
keywords Character; Atmosphere; Anthropological spaces; Visualization; Literature
series eCAADe
email
last changed 2022/06/07 07:49

_id ijac20108104
id ijac20108104
authors Kotnik, Toni
year 2010
title Digital Architectural Design as Exploration of Computable Functions
source International Journal of Architectural Computing vol. 8 - no. 1, 1-16
summary In recent decades, new methodologies have emerged in architectural design that exploit the computer as a design tool. This has generated a varied set of digital skills and a new type of architectural knowledge. However, up to now, a theoretical framework is missing that would allow for a comprehensive pedagogical agenda for the teaching of digital design in architecture. The present paper offers an attempt towards such a theoretical grounding based on the concept of computable functions. This approach results in an abstract and formal perspective on digital design that enables a grouping of contemporary digital design methods and an understanding of their logical relationship. On a theoretical level, it opens a path for the study of the mechanism that facilitates the transfer of concepts from various scientific disciplines into architecture.
series journal
last changed 2019/05/24 09:55

_id ecaade2010_142
id ecaade2010_142
authors Labelle, Guillaume; Nembrini, Julien; Huang, Jeffrey
year 2010
title Geometric Programming Framework: ANAR+: Geometry library for Processing
doi https://doi.org/10.52842/conf.ecaade.2010.403
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.403-410
wos WOS:000340629400043
summary This paper introduces a JAVA based library for parametric modeling through programming. From the recent advent of scripting tools integrated into commercial CAAD software and everyday design practice, the use of programming applied to an architectural design process becomes a necessary field of study. The ANAR+ library is a parametric geometry environment meant to be used as programming interface by designers. Form exploration strategies based on parametric variations depends on the internal logic description, a key role for form generation. In most commercial CAD software, geometric data structures are often predefined objects, thus constraining the form exploration, whereas digital architectural research and teaching are in need for an encompassing tool able to step beyond new software products limitations. We introduce key concepts of the library and show a use of the library within a form finding process driven by irradiance simulation.
keywords Processing; JAVA; Scene graph; Parametric modeling; Geometry
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia11_132
id acadia11_132
authors MacDowell, Parke; Tomova, Diana
year 2011
title Robotic Rod-bending: Digital Drawing in Physical Space
doi https://doi.org/10.52842/conf.acadia.2011.132
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 132-137
summary This paper details preliminary project-based design research that emphasizes the development of tools and processes in tandem with the development of ideas and forms. Amid increasingly mechanized fabrication processes, this project injects the human as code-writer and tool-builder, asserting authorship within the modes of production themselves. The initial output from this foray, wavePavilion is an architectural installation generated by computer algorithms and built using custom digital fabrication technology. Completed in June 2010, the project is located on the grounds of the University of Michigan Taubman College of Architecture and Urban Planning. wavePavilion has a footprint of 20x30 feet and stands 14 feet tall, containing over a kilometer of 1/4-inch diameter steel rod.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id caadria2015_203
id caadria2015_203
authors Nakapan, Walaiporn
year 2015
title Challenge of Teaching BIM in the First Year of University
doi https://doi.org/10.52842/conf.caadria.2015.509
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 509-518
summary This paper presents an experience about BIM curriculum from Faculty of Architecture, Rangsit University, which has been implemented since 2010. Our approach is to introduce BIM into the first year architectural design curriculum both as a tool and as a new way to practice design. The objective of this paper is to identify problems encountered from the class and typical misconceptions about BIM curriculum based on our experience. Problems encountered are 1) The need to boost students’ attention, 2) The lack of acceptability criteria of the students’ design flaws, 3) The lack of BIM Guideline to be used in the curriculum, and 4) The need to grow the BIM thinking in other advanced studios. Typical misconceptions identified are 1) BIM is just another design tool 2) Traditional design process can be used in a BIM design studio, and 3) BIM limits creativity. Finally, we propose how to improve the curriculum and compare the BIM design process to traditional design process.
keywords BIM; Curriculum; Education.
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_502102 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002