CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 443

_id ijac20108204
id ijac20108204
authors Jacobus, Frank; Jay McCormack, Josh Hartung
year 2010
title The Chair Back Experiment: Hierarchical Temporal Memory and the Evolution of Artificial Intelligence in Architecture
source International Journal of Architectural Computing vol. 8 - no. 2, 151-164
summary Computational synthesis tools that automatically generate solutions to design problems are not widely used in architectural practice despite many years of research. This deficiency can be attributed, in part, to the difficulty of constructing robust building specific databases. New advances in artificial intelligence such as Hierarchical Temporal Memory (HTM) have the potential to make the construction of these databases more realistic in the near future. Based on an emerging theory of human neurological function, HTMs excel at ambiguous pattern recognition. This paper includes a first experiment using HTMs for learning and recognizing patterns in the form of visual style characteristics in three distinct chair back types. Results from the experiment indicate that HTMs develop a similar storage of quality to humans and are therefore a promising option for capturing multi-modal information in future design automation efforts.
series journal
last changed 2019/05/24 09:55

_id ecaade2010_158
id ecaade2010_158
authors Kuo, Jeannette; Zausinger, Dominik
year 2010
title Scale and Complexity: Multi-layered, multi-scalar agent networks in time-based urban design
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.651-657
doi https://doi.org/10.52842/conf.ecaade.2010.651
wos WOS:000340629400070
summary Urban design, perhaps even more than architecture, is a timedependent discipline. With its multi-layered complexities, from individual buildings to entire regions, decisions made at one level, that may not show effect immediately, may prove to have disastrous consequences further down the line. The need to incorporate time-based simulations in urban modeling, and the demand for a means of evaluating the changes have led to explorations with multi-agent systems in computation that allow for decisions to be decentralized. From the first basic rule-based system of Conway’s Game of Life [1] to recent urban simulations developed at institutions like the ETH Zurich [2], or UCL CASA [3], these programs synthesize the various exigencies into complex simulations so that the designer may make informed decisions. It is however not enough to simply use parametrics in urban design. Rules or desires implemented at one scale may not apply to another, while isolating each scalar layer for independent study reverts to the disjunctive and shortsighted practices of past planning decisions. Central to current parametric research in urban design is the need to deal with multiple scales of urbanism with specific intelligence that can then feed back into the collective system: a networked parametric environment. This paper will present the results from a city-generator, developed in Processing by Dino Rossi, Dominik Zausinger and Jeannette Kuo, using multiagent systems that operate interactively at various scales.
keywords Agent-based modeling; Cellular automata; Parametric urbanism; Neural network; Complexity; Genetic algorithm; Urban dynamics
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2010_021
id ecaade2010_021
authors Gil, Jorge; Beirao, Jose; Montenegro, Nuno; Duarte, Jose
year 2010
title Assessing Computational Tools for Urban Design: Towards a “city information model”
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.361-369
doi https://doi.org/10.52842/conf.ecaade.2010.361
wos WOS:000340629400038
summary This paper presents an assessment of a selection software tools for urban design confronting their capabilities with the goals of the CityInduction research project. The goal of this paper is the assessment of existing platforms for computer aided urban design to select one as the basis for implementing the urban design model proposed in the CityInduction project. This model includes three sub-models that support the formulation of design programs from contextual information, the exploration of designs solutions through a grammarbased generative approach, and the validation of designs against the program through the use of evaluation tools. To each of these sub-models corresponds a module in the envisioned platform and so, existing platforms are assessed in terms of their ability to support the implementation of each module. The current goal is a proof-of-concept implementation, but the final goal is the development of a complete platform for supporting urban design.
keywords Software review; Sustainable urban design; GIS; CAAD; BIM
series eCAADe
email
last changed 2022/06/07 07:51

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia20_668
id acadia20_668
authors Pasquero, Claudia; Poletto, Marco
year 2020
title Deep Green
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 668-677.
doi https://doi.org/10.52842/conf.acadia.2020.1.668
summary Ubiquitous computing enables us to decipher the biosphere’s anthropogenic dimension, what we call the Urbansphere (Pasquero and Poletto 2020). This machinic perspective unveils a new postanthropocentric reality, where the impact of artificial systems on the natural biosphere is indeed global, but their agency is no longer entirely human. This paper explores a protocol to design the Urbansphere, or what we may call the urbanization of the nonhuman, titled DeepGreen. With the development of DeepGreen, we are testing the potential to bring the interdependence of digital and biological intelligence to the core of architectural and urban design research. This is achieved by developing a new biocomputational design workflow that enables the pairing of what is algorithmically drawn with what is biologically grown (Pasquero and Poletto 2016). In other words, and more in detail, the paper will illustrate how generative adversarial network (GAN) algorithms (Radford, Metz, and Soumith 2015) can be trained to “behave” like a Physarum polycephalum, a unicellular organism endowed with surprising computational abilities and self-organizing behaviors that have made it popular among scientist and engineers alike (Adamatzky 2010) (Fig. 1). The trained GAN_Physarum is deployed as an urban design technique to test the potential of polycephalum intelligence in solving problems of urban remetabolization and in computing scenarios of urban morphogenesis within a nonhuman conceptual framework.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2010_042
id caadria2010_042
authors Celento, David
year 2010
title Open-source, parametric architecture to propagate hyper-dense, sustainable urban communities: parametric urban dwellings for the experience economy
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 443-452
doi https://doi.org/10.52842/conf.caadria.2010.443
summary Rapid developments in societal, technological, and natural systems suggest profound changes ahead if research in panarchical systems (Holling, 2001) is to be believed. Panarchy suggests that systems, both natural and man-made, rise to the point of vulnerability then fail due to disruptive forces in a process of ‘creative destruction.’ This sequence allows for radical, and often unpredictable, renewal. Pressing sustainability concerns, burgeoning urban growth, and emergent ‘green manufacturing’ laws, suggest that future urban dwellings are headed toward Gladwell’s ‘tipping point’ (2002). Hyper-dense, sustainable, urban communities that employ open-source standards, parametric software, and web-based configurators are the new frontier for venerable visions. Open-source standards will permit the design, manufacture, and sale of highly diverse, inter-operable components to create compact urban living environments that are technologically sophisticated, sustainable, and mobile. These mass-customised dwellings, akin to branded consumer goods, will address previous shortcomings for prefabricated, mobile dwellings by stimulating consumer desire in ways that extend the arguments of both Joseph Pine (1992) and Anna Klingman (2007). Arguments presented by authors Makimoto and Manners (1997) – which assert that the adoption of digital and mobile technologies will create large-scale societal shifts – will be extended with several solutions proposed.
keywords Mass customisation; urban dwellings; open source standards; parametric design; sustainability
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2010_148
id ecaade2010_148
authors Joyce, Sam; Tabak, Vincent; Sharma, Shrikant; Williams, Chris
year 2010
title Applied Multi-Scale Design and Optimization for People Flow
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.633-639
doi https://doi.org/10.52842/conf.ecaade.2010.633
wos WOS:000340629400068
summary This paper presents an overview of the current developments in people flow analysis in Buro Happold’s analytical group SMART Solutions. The role of people flow analysis has become an established one, within many leading consultancy firms with their own specialist groups supporting the architects and planners in the design of buildings and urban spaces. This paper proposes that the key development in the progression of this work is a due to a change in emphasis, away from a passive analysis task where its key role is to validate assumptions of flow and alleviate areas of high concern to using the process as a design instigator/driver. The new paradigm emerging, involves calculating people flow at the conceptual stage of a project in collaboration with the respective architectural firm, and using this information as a primary design input. This paper describes and analyses the two objectives set out by Buro Happold’s SMART group in order to improve the process of design; firstly to make it more prominent in the design environment and secondly to see if it has the potential to work as a design driver. These objectives create a design methodology defined by people flow and suggest value in innovating and conceiving of robust simple methods of improving designs.
keywords People flow; Pedestrian flow; Multi-objective optimization; Masterplanning; Network analysis
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2010_130
id ecaade2010_130
authors Sdegno, Alberto
year 2010
title Digital Simulation of the City for Three Millions Inhabitants by Le Corbusier: Geometrical analysis, electronic reconstruction and video animation
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.549-556
doi https://doi.org/10.52842/conf.ecaade.2010.549
wos WOS:000340629400059
summary The research that is presented describes the geometrical analysis and the digital reconstruction of one of the most important designs by Le Corbusier: the City of Three Millions Inhabitants; it represents one of the most impressive solutions of the idea of Future City done during the XX Century, and a lot of its architectural elements are now part of contemporary buildings. The aim of the research was to understand the main morphological aspects of it and compare the different solutions made by the author during his life, starting from the first public presentation in occasion of the Salon d’Automne in Paris (1922) and to reconstruct the 3D digital realistic-textured model of it, in order to realize the video that describes the whole project of the city; the research was done at the Faculty of Architecture of the IUAV University of Venice.
keywords Le Corbusier; Urban design; Digital reconstruction; Simulation; Video
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2010_034
id caadria2010_034
authors Chung, Daniel Hii Jun and Malone-Lee Lai Choo
year 2010
title Computational fluid dynamics for efficient urban design
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 357-366
doi https://doi.org/10.52842/conf.caadria.2010.357
summary Computational fluid dynamics (CFD) is a method of solving and analysing problems that involved fluid flows. In the field of architecture, urban design and urban planning, CFD is useful for the analysis of ventilation and airflow in the built environment, especially in very dense cities. This paper will look into the possibility of making CFD more accessible to the general design and planning field. A simulation is done on a urban design proposal to quickly see how air flow behaves around it. From there, it looks into the future where technology will make CFD simulation more easily adopted and the possibilities of integrating the ventilation analysis with other environmental analysis results into the urban design arena.
keywords Computational fluid dynamics; sustainability; high density; urban design; airflow
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia10_379
id acadia10_379
authors Geiger, Jordan; San Fratello, Virginia
year 2010
title Hyperculture: Earth as Interface
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 379-384
doi https://doi.org/10.52842/conf.acadia.2010.379
summary Digital Fabrication and Hybrid Interface: Lessons in Agriculture :abstract Two vitally important fields of work in architecture and computing—in digital fabrication methods and in the development of interfaces between digital and analog systems—can find new forms in their combination with one another. Moreover, a recent such experiment in the production of landscape rather than building not only suggests a number of implications for architectural work, but of ecological, economic and urban structures that underlie the projects’s visible formal and aesthetic orders. This project, “Hyperculture: Earth as Interface,” studied the potential outcomes of modifying a commonly employed information infrastructure for the optimization of agricultural production throughout most of America’s heartland; and that same infrastructure’s latent flexibility to operate in both “read” and “write” modes, as a means for collaborative input and diversified, shared output. In the context of industrialized agriculture, this work not only negotiates seemingly contradictory demands with diametrically opposed ecological and social outcomes; but also shows the fabrication of landscape as suggestive of other, more architectural applications in the built environment. The Hyperculture project is sited within several contexts: industrial, geographically local, ecological, and within the digital protocols of landscape processing known as “precision agriculture.” Today, these typically work together toward the surprising result of unvariegated repetition, known commonly as monoculture. After decades of monoculture’s proliferation, its numerous inefficiencies have come under broad recent scrutiny, leading to diverse thinking on ways to redress seemingly conflicting demands such as industry’s reliance on mass-production and automation; the demand for variety or customization in consumer markets; and even regulatory inquiries into the ecological and zoning harms brought by undiversified land use. Monoculture, in short, is proving unsustainable from economic, environmental, and even aesthetic and zoning standpoints. But its handling in digital interfaces, remote sensing and algorithmically directed fabrication is not.
keywords GPS, precision agriculture, digital landscape fabrication, interface, analog/digital systems, open source platform, digital fabrication, multi-dimensional scales
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia10_133
id acadia10_133
authors Kim, Jong Bum, Clayton, Mark J.
year 2010
title Support Form-based Codes with Building Information Modeling – The Parametric Urban Model Case Study
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 133-138
doi https://doi.org/10.52842/conf.acadia.2010.133
summary This study aims to develop the parametric urban model to support Form-based Codes (FBCs) by using Object-Oriented Parametric Modeling (OOPM) and Building Information Modeling (BIM). FBCs have been used to substitute conventional land-use and zoning regulations in the United States. In many cities, FBCs were implemented successfully, but excessive design constraints, difficult code making process, and missing density of FBCs are criticized. As a response to the increasing needs of parametric modeling approaches in the urban design domain, we applied BIM and OOPM techniques in two case studies. We conclude that BIM and OOPM have a great potential to support planning and design processes, and that the parametric urban model allows FBCs to be more flexible, interpretable, and interoperable.
keywords Form-based Codes, Building Information Modeling, Object-Oriented Parametric Modeling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaade2010_090
id ecaade2010_090
authors Ladouce, Nicolas; Hee, Limin; Janssen, Patrick T.
year 2010
title Urban Space Planning for Sustainable High Density Environment
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.777-785
doi https://doi.org/10.52842/conf.ecaade.2010.777
wos WOS:000340629400083
summary In this paper we investigate the possibilities of new typologies of urban public space for high density environments. The premise for the project would be that with new high-density typologies, it would be necessary to consider a difference in the nature of urban public spaces rather than a difference in degree from the status quo. From observations of urban patterns that drive collective, hybrid spaces around Asia, relationships between urban attributes are drawn. For this paper we shall focus on the particular case of Linked Hybrid, Beijing, China, as an elevated urban public space. A literature review focuses on reviewing key theories to construct and adopt a rating system to develop an empirical framework to evaluate the case studies and extract the key attributes. These rated attributes are then abstracted in a real-time model that enables user manipulation. The purpose is to create a tool to better observe the effects and evolution of planning decisions for future urban spaces in high density contexts. The preliminary results are consistent with the idea that selected spatial parameters of a space may be embedded into a “barcode” and referenced as a type. The combination of different types, hence their parameters may be used for effective replication of their characteristics to improve the decision-making process for urban designers. The research is not intended to reproduce the successful urban public spaces but rather result in a catalogue of typologies which can be referred to during the initial stages of planning to provide an indication of spatial qualities.
keywords High density environments; Collective urban space; Hybrid typologies; Parametric urbanism
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2010_149
id ecaade2010_149
authors Salim, Flora Dilys; Burry, Jane; Taniar, David; Lee, Vincent Cheong; Burrow, Andrew
year 2010
title The Digital Emerging and Converging Bits of Urbanism: Crowddesigning a live knowledge network for sustainable urban living
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.883-891
doi https://doi.org/10.52842/conf.ecaade.2010.883
wos WOS:000340629400094
summary Data is ubiquitous in our cities. However, designing a knowledge network about our cities is an arduous task, given that data sensed cannot be used directly, human significance must be added. Adding human significance can be achieved via an automated “expert system (ES)” in which domain expert knowledge are stored in a knowledge-based repository. The domain expert knowledge is matched with the corresponding data to derive specific inference which can aid decision making for urban stakeholders.This requires amalgamation of various interdisciplinary techniques. This paper presents a survey of existing technologies in order to investigate the emerging issues surrounding the design of a live knowledge network for sustainable urban living. The maps and models of the existing infrastructure of our cities that include a wealth of information such as topography, layout, zoning, land use, transportation networks, public facilities, and resource network grids need to be integrated with real-time spatiotemporal information about the city. Public data in forms of archives and data streams as well as online data from the social network and the Web can be analyzed using data mining techniques. The domain experts need to interpret the results of data mining into knowledge that will augment the existing knowledge base and models of our cities. In addition to the analysis of archived and streamed data sources from the built environment, the emerging state-of-the-art Web 2.0 and mobile technologies are presented as the potential techniques to crowddesign a live urban knowledge network. Data modeling, data mining, crowdsourcing, and social intervention techniques are reviewed in this paper with examples from the related work and our own experiments.
keywords Crowdsourcing; Knowledge discovery; Mobile and ubiquitous computing; Urban modeling; Spatial interaction; Social networking; Web 2.0
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2010_000
id ecaade2010_000
authors Schmitt, Gerhard; Hovestadt, Ludger; Van Gool, Luc; Bosché, Frédéric; Burkhard, Remo; Colemann, Suzanne; Halatsch, Jan; Hansmeyer, Michael; Konsorski-Lang, Silke; Kunze, Antje; Sehmi-Luck, Martina (eds.)
year 2010
title FUTURE CITIES
source 28th eCAADe Conference Proceedings [ISBN 978-0-9541183-7-2], ETH Zurich (Switzerland) 15-18 September 2010, 904 p.
doi https://doi.org/10.52842/conf.ecaade.2010
summary Future Cities – the title of the 2010 eCAADe Conference describes one of the major challenges of the 21st century. The conference theme is a logical evolution from previous years in that it expands the focus of interest from the building to larger scales and higher complexity. The conference contributions describe methods and instruments that were developed in the last three decades and apply them to city and territorial planning. The eCAADe proceedings demonstrate that CAAD research and education of the past prepared the ground for the future and for the increased responsibility of the CAAD community. The population of cities has developed worldwide from a minority to the majority. Cities are the largest, most complex and most dynamic man-made systems. As vibrant centres of cultural life and of mega events, they are engines that drive local and global economies. However, their growth was in the fewest cases determined by sustainability goals. As a result, contemporary metropolitan territories are often environmentally, socially and economically unsustainable entities placing increasing pressure on the surrounding rural areas. No longer do traditional methods support the planning and managing of large cities – these methods have reached their limits. Parallel to the revolution in the design of buildings, we need a radical re-thinking of the planning, design, development and management process of cities and urban-rural systems. Compared to buildings, urban and rural systems involve a much higher number of stakeholders and decision makers. We need to study and simulate the effects and side effects of urban-rural planning or re-development much earlier in the process than normally done today. The goal seems clear: the transformation of existing and the planning of new sustainable urban-rural systems. As ordering principles we can build on experiences with building architecture. Complexity, dynamics, scale, and the urban metabolism evolve as promising research and education areas.
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2009_833
id sigradi2009_833
authors Stoyanov, Momchil
year 2009
title Análise lumínica virtual de elementos construídos por meio de programação: exemplo de aplicação em software do tipo BIM [ Analysis of Virtual Elements Constructed by Means of Programming: The Example of BIM-Application Software]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Daylighting is an important part of designing sustainably. Daylighting is the use of natural light for primary interior illumination. This reduces our need for artificial light within the space, thus reducing internal heat gain and energy use. Direct sunlight, once it enters the building, is not only light but heat, and that additional heat will need to be taken into account in your energy analysis." While Autodesk Revit Architecture 2010 (ARA) itself cannot perform the actual analysis, there are some ways to do that. This papper focuses on the study of parametric modeling using a BIM tool for daylighting analysis. This paper presents the first part of the building method of LUME, a plug-in maked whit C# programming language in Microsoft Visual Studio 2010 and ARA Software Developer Kit (SDK) package. The script accepts as its input a standard three dimensional model of building opening and his position on space.
keywords Script language; BIM; Revit Architecture; Energy analysis; Daylighting; Parametric design process
series SIGRADI
email
last changed 2016/03/10 10:01

_id caadria2021_253
id caadria2021_253
authors Vivanco Larrain, Tomas, Valencia, Antonia and Yuan, Philip F.
year 2021
title Spatial Findings on Chilean Architecture StyleGAN AI Graphics
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 251-260
doi https://doi.org/10.52842/conf.caadria.2021.1.251
summary The use of StyleGAN algorithms proposes a novel approach in the investigation of architectural images. Even though graphical outcomes produced by StyleGAN algorithms are far from being architectural spaces, they might become a starting point in the creative process of architectural projects. By creating a database of specific categories of architectural images located in certain contexts, significant findings might emerge regarding their categorization in accordance to the style of a culture. This research analyzes the architectural images that result from implementing StyleGAN algorithms in a database of images of Chilean houses built between the years 2010 and 2020 and selected as finalist of the ´Project of the Year´ from international viewers and curators of the most viewed architectural website of the world. Our findings suggest that Chilean houses have two distinctive elements strongly influenced by human bias: the proportion of voids in the architectural-like generative volume and the integration of vegetation or landscape.
keywords StyleGAN; Chilean architecture; artificial intelligence; spatial findings
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2021_110
id caadria2021_110
authors Bao, Ding Wen, Yan, Xin, Snooks, Roland and Xie, Yi Min
year 2021
title SwarmBESO: Multi-agent and evolutionary computational design based on the principles of structural performance
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 241-250
doi https://doi.org/10.52842/conf.caadria.2021.1.241
summary This paper posits a design approach that integrates multi-agent generative algorithms and structural topology optimisation to design intricate, structurally efficient forms. The research proposes a connection between two dichotomous principles: architectural complexity and structural efficiency. Both multi-agent algorithms and Bi-directional evolutionary structural optimisation (BESO) (Huang and Xie 2010), are emerging techniques that have significant potential in the design of form and structure.This research proposes a structural behaviour feedback loop through encoding BESO structural rules within the logic of multi-agent algorithms. This hybridisation of topology optimisation and swarm intelligence, described here as SwarmBESO, is demonstrated through two simple structural models. The paper concludes by speculating on the potential of this approach for the design of intricate, complex structures and their potential realisation through additive manufacturing.
keywords Swarm Intelligence; Multi-agent; BESO (bi-directional evolutionary structural optimisation); Intricate Architectural Form; Efficient Structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2010_183
id ecaade2010_183
authors Bourdakis, Vassilis
year 2010
title Designing Interactions: A step forward from time based media and synthetic space design in architectural education
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.151-156
doi https://doi.org/10.52842/conf.ecaade.2010.151
wos WOS:000340629400016
summary The paper follows the development of digital tools for architects and briefly discusses their utility within education and practice. The move from static CAD tools to time based media followed by programmatic processes and virtual environment design is addressing the evolution of the profession and to an extent reflects practitioners’ needs. The paper focuses on the notion of interactivity and how it is been addressed in various fields. Borrowing from computer science and game design the author presents a course dealing with designing interactivity, responsiveness and users feeding their input back in the design. The aim of the paper is to analyse and support a new set of tools in architectural curricula that will implement interactivity and integrate it into spatial design leading to a holistic approach promoting intelligence, hybridity and responsiveness of the built environment. Following, the elaboration of the rationale, a brief discussion on tools and project directions is carried out.
keywords Interaction; Virtual environments; Time based media; Curriculum; Intelligent environments
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia10_364
id acadia10_364
authors Cabrinha, Mark
year 2010
title Parametric Sensibility: Cultivating the Material Imagination in Digital Culture
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 364-371
doi https://doi.org/10.52842/conf.acadia.2010.364
summary Digital fabrication and parametric tools require not only digital dexterity but a robust material sensibility that precedes digital mediation. Developed through Gaston Bachelard’s concept of the graft, the material imagination acts as a reciprocal creative intelligence to today’s dominant formal imagination enabled through the fluid geometric precision in digital tools. This paper presents a series of “materials first” pedagogical approaches through which material constraints become operative design criteria in the development of digital skills. This intersection between analog and digital systems develops a parametric sensibility that is demonstrated through physical prototypes and full-scale installations. This approach is implicitly a critique of the disregard of material logic in many parametric approaches in particular, and digital design culture in general. Conversely, the development of a parametric sensibility through analog means enables the development of material primitives from which parametric tools can expand the material imagination while giving structure to it.
keywords Parametric, Digital Fabrication, Analog, Digital
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_615292 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002