CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 452

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2010_249
id ascaad2010_249
authors Hawker, Ronald; Dina Elkady and Thomas Tucker.
year 2010
title Not Just Another Pretty Face
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 249-260
summary Digital Heritage has gained popularity recently as means of dynamically representing and reconstructing historic buildings and cityscapes. Simultaneously this new medium of visualization affords another approach to examine human-virtual environment interaction and offers possibilities of exploiting virtual environments as educational tools. At Zayed University, a federal university primarily for women citizens of the United Arab Emirates, we have integrated student-faculty research and documented and reconstructed a number of historical buildings within the curriculum of the Department of Art and Design. We have further collaborated with the animation program at Winston Salem State University in North Carolina, utilizing the motion capture laboratory at the Center of Design Innovation to literally breathe life into these reconstructions. The primary idea is to contribute to the ongoing documentation of the country’s heritage through creating “responsive virtual heritage environments” where the spectator is actively engaged in exploring the digital space and gain certain degrees of control over the course and scheme of the dynamic experience. The process begins by introducing students to utilize the diverse capabilities of CAD and three dimensional computer applications and intertwine the technical skills they acquire to construct virtual computer models of indigenous built environments. The workflow between the different applications is crucial to stimulate students’ problem solving abilities and tame the application tools, specifically when constructing complex objects and structural details. In addition the spatial and temporal specificity different computer applications afford has proven useful in highlighting and analyzing the buildings’ function within the extreme climate of the country and their role in the political-economy, particularly in visualizing the ephemeral qualities of the architecture as they relate to passive cooling and the inter-relationships between built and natural environments. Light and time settings clarify shadow casting and explain the placement and orientation of buildings. Particle simulations demonstrate the harnessing of wind and rain both urban and rural settings. The quantitative data accumulated and charted through CAD and VR programs and geo-browsers can be integrated with qualitative data to create a more holistic analytical framework for understanding the complex nature of past settlement patterns. In addition, the dynamic nature of this integration creates a powerful educational tool. This paper reviews this ongoing research project with examples of reconstructions completed across the country, demonstrating analytical and educational possibilities through the integration of CAD programs with a range of other statistical, geographic, and visualization software.
series ASCAAD
email
last changed 2011/03/01 07:36

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_218
id acadia10_218
authors Chok, Kermin; Donofrio, Mark
year 2010
title Structure at the Velocity of Architecture
doi https://doi.org/10.52842/conf.acadia.2010.218
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 218-226
summary This paper outlines a digital design workflow, utilized by the authors, which actively links the geometry platforms being utilized by architects with tools for structural analysis, design, form-finding, and optimization. This workflow leads to an accelerated generation and transfer of information to help guide and inform the design process. The engineering team is thus empowered to augment the architect’s design by ensuring that the design team is conscious of the structural implications of design decisions throughout the design process. A crucial element of this design process has been the dynamic linkage of parametric geometry models with structural analysis and design tools. This reduces random errors in model generation and allows more time for critical analysis evaluation. However, the ability to run a multitude of options in a compressed time frame has led to ever increasing data sets. A key component of this structural engineering workflow has become the visualization and rigorous interpretation of the data generated by the analysis process. The authors have explored visualization techniques to distill the complex analysis results into graphics that are easily discernable by all members of the design team.
keywords Workflows, Structure, Collaboration, Visualizations, Analysis
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ijac20108301
id ijac20108301
authors Chok, Kermin; Mark Donofrio
year 2010
title Abstractions for information based design
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 233-256
summary This paper discusses how live linkages between parametric geometry, structural analysis and optimization can be leveraged to explore an architectural massing from different perspectives of optimum assuming a set of cost and value characteristics. Broad performance measures such as program area, cladding surface and structural quantities were computed for each geometry variation and collected. Optimums from different perspectives (structure, developer, designer) were extracted for each height category and compared. To further inform and engage stakeholders, a variety of visualization and filtering techniques have been implemented. These new techniques and associated distillation of data aids the design team in understanding the design space. A script based approach towards geometry and data management has led to a shift towards active option evaluation and a more interactive approach to form exploration. A generic workflow for structural analysis, design and optimization has been implemented and this ability to engineer at a greater velocity will move the design profession towards a more collaborative and information based design environment.
series journal
last changed 2019/05/24 09:55

_id ijac20108404
id ijac20108404
authors Erhan, Halil; Nahal H. Salmasi, Rob Woodbury
year 2010
title ViSA: A Parametric Design Modeling Method to Enhance Visual Sensitivity Control and Analysis
source International Journal of Architectural Computing vol. 8 - no. 4, p. 461
summary The ability of parametric computer-aided design systems to generate models rapidly enables designers to explore the downstream impacts of changes to key design parameters. However, the typical modeling functions provided in the parametric systems can become insufficient when such exploration is needed for increasingly complex parametric design models. Main challenges for exploration that we observed are control and analysis of changes on the design model and in particular, when they are introduced continuously. The system interfaces and the human-visual perception system alleviate these challenges. In this study, we demonstrate ViSA, a Visual Sensitivity Analysis method that aims to make the effects of change within a parametric model controllable, measurable and apparent for designers. The approach aims to improve visually analyzing the sensitivity of a design model to planned parametric changes. The method proposes customizable control and visualization features in the model that are decoupled from each other at the design level, while providing interfaces between them through parametric associations. We present findings from our case studies in addition to the results of a user study demonstrating the applicability and limitations of the proposed method.
series journal
last changed 2019/05/24 09:55

_id sigradi2010_252
id sigradi2010_252
authors Neto, de Faria José; Akemi Omine Kátia; Carvalho Costa Paulo Antonio
year 2010
title Projeto Design Condensado: níveis de inteligência associados ao sistema colaborativo dinâmico de visualização de dados [Design project condensed: levels of intelligence associated with the dynamic collaborative system of data visualization]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 252-255
summary The “Condensed Design Project” aims to discuss and reflect on how the levels of auxiliary intelligence associated with dynamic collaborative systems of data visualization can help research, organize, manage, analyze and compare dense data amounts of historical facts and events. The main objective is to understand how systems endowed with “auxiliary intelligence” help to assimilate and emulate methods and knowledge of different researchers, and at the same time are able to promote cooperation and research, as well as the study and teaching of design history. And finally, it describes the experience of the use of “specialist system” and “reasoning system based on cases” concepts.
keywords design history; collaborative system; auxiliary intelligence; data visualization
series SIGRADI
email
last changed 2016/03/10 09:56

_id ecaade2010_054
id ecaade2010_054
authors Wurzer, Gabriel; Fioravanti, Antonio; Loffreda, Gianluigi; Trento, Armando
year 2010
title Function & Action: Verifying a functional program in a game-oriented environment
doi https://doi.org/10.52842/conf.ecaade.2010.389
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.389-394
summary The finding of a functional program for any kind of building involves a great amount of knowledge about the behavior of future building users. This knowledge can be gathered by looking at relevant building literature (Adler, 1999; Neufert and Neufert, 2000) or by investigating the actual processes taking place in similar environments, the latter being demonstrated e.g. by (Schütte-Lihotzky, 2004) or new functionalist approaches of the MVRDV group (Costanzo, 2006)). Both techniques have the disadvantage that the architect might assume a behavior which is seldom experienced in real life (either through lack of information or by failing to meet the building user’s expectations). What is needed is a verification step in which the design is tested on real users. We have devised a game-like environment (Figure 1a) in which it is possible to capture the behavior of future building users in order to verify the relevance of the design even at a very early stage. As result of applying our approach, we can find previously overlooked usage situations, which may be used to further adapt the design to the user’s needs.
wos WOS:000340629400041
keywords Requirements checking; Participative design
series eCAADe
email
last changed 2022/06/07 07:57

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_145
id acadia10_145
authors Briscoe, Danelle
year 2010
title Information Controlled Erosion
doi https://doi.org/10.52842/conf.acadia.2010.145
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 145-150
summary This paper documents research of a design process that interrelates a single information model to 5-axis, waterjet cutting technology. With the intention of creating an optimized design, data is streamed through a building information model that controls geometry parametrically by a component/system relationship. At the scale of a 4’x8’ panel, material properties and pattern variability act as underlying initiators of design rather than post-rational information. In a manner uncommon to the discipline, the information model is being used as a generative tool, rather than as one for mere documentation. The research assigns a limestone wall type to the panel—a material predominantly used in areas where it is indigenous and typically desirable for its texture, color, and thermal properties. The intention is to develop potentialities through material specificity in the information model’s conceptualization. The water-jet process is then used to erode the limestone to achieve varying fields of scalar voids. In addition, the thickness of wall cladding attenuates for figuration and interest. The final stone panels transition from a rain screen system to a solar screen that modulates light, thereby linking environmental intentions to current technological capabilities. The information model is exported for analysis of daylight and structural dynamic qualities and quantities as part of the workflow. Parameters within the information model database facilitate a dimensionally controlled iterative process. Moreover, fabricating with building materials via the information model expedites a design and makes possible for materiality to move beyond merely conceptual representation.
keywords digital fabrication, information model
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_266
id ecaade2012_266
authors Casucci, Tommaso ; Erioli, Alessio
year 2012
title Behavioural Surfaces: Project for the Architecture Faculty library in Florence
doi https://doi.org/10.52842/conf.ecaade.2012.1.339
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 339-345
summary Behavioural Surfaces is a thesis project in Architecture discussed on December 2010 at the University of Florence. The project explores the surfacespace relationship in which a surface condition, generated from intensive datascapes derived from environmental data, is able to produce spatial differentiation and modulate structural and environmental preformance. Exploiting material self-organization in sea sponges as surfaces that deploy function and performance through curvature modulation and space defi nition, two different surface definition processes were explored to organize the system hierarchy and its performances at two different scales. At the macroscale, the global shape of the building is shaped on the base of isopotential surfaces while at a more detailed level the multi-performance skin system is defi ned upon the triply periodic minimal surfaces (TPMS).
wos WOS:000330322400034
keywords Digital datascape; Isosurfaces; Material intelligence; Minimal sufaces
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2010_048
id caadria2010_048
authors Gu, Ning; Vishal Singh and Xiangyu Wang
year 2010
title Applying augmented reality for data interaction and collaboration in BIM
doi https://doi.org/10.52842/conf.caadria.2010.511
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 511-520
summary Building Information Modelling (BIM) is expected to enable efficient collaboration, improved data integrity, distributed and flexible data sharing, intelligent documentation, and high-quality outcome, through enhanced performance analysis, and expedited multi-disciplinary planning and coordination. Despite these apparent benefits, the collaboration across the architecture, engineering and construction (AEC) disciplines is largely based on the exchange of 2D drawings. This paper reports the findings from a research project that aims at developing measures to enhance BIM-based collaboration in the AEC industry. Based on focus group interviews with industry participants and case studies of BIM applications, visualisation was identified as an interactive platform across the design and non-design disciplines. It is argued that visualisation can enhance the motivation for BIM-based collaboration through integration of advanced visualisation techniques such as virtual reality (VR) and augmented reality (AR). An AR interface for a BIM server is also presented and discussed in the paper. AR can open up potential opportunities for exploring alternatives to data representation, organisation and interaction, supporting seamless collaboration in BIM.
keywords BIM; augmented reality; design collaboration
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2010_232
id sigradi2010_232
authors Gómez, Paula
year 2010
title Generative Diagrams: Embedding Spatial Data to Generate Informed Architectural Designs
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 232-235
summary In early stages of architectural design, designers manage complex but not accurate information in terms of spatial dimensions and technical specifications. To include quantitative information at early stages, parametric diagrams (PD) are designed to manipulate accurate information in order to generate architectural design alternatives. PD controls the diagrams that manage all of the information that relates to the design, including the geometry of an architectural design proposal. PD models work by designing spatial relationships through diagrams, and not by designing physical architectural elements.
keywords architectural diagrams, generative, parameters, software, design.
series SIGRADI
email
last changed 2016/03/10 09:53

_id ijac20108306
id ijac20108306
authors Peters, Brady
year 2010
title Acoustic Performance as a Design Driver: Sound Simulation and Parametric Modeling using SmartGeometry
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 337-358
summary Acoustic performance is an inevitable part of architectural design. Our sonic experience is modified by the geometry and material choices of the designer. Acoustic performance must be understood both on the level of material performance and also at the level of the entire composition. With new parametric and scripting tools performance driven design is possible. Parametric design and scripting tools can be used to explore not only singular objectives, but gradient conditions. Acoustic performance is often thought of in terms of singular performance criteria. This research suggested acoustic design can be understood in terms of gradients and multiple performance parameters. Simulation and modeling techniques for computational acoustic prediction now allow architects to more fully engage with the phenomenon of sound and digital models can be studied to produce data, visualizations, animations, and auralizations of acoustic performance. SmartGeometry has promoted design methods and educational potentials of a performance-driven approach to architectural design through parametric modeling and scripting. The SmartGeometry workshops have provided links between engineering and architecture, analysis and design; they have provided parametric and scripting tools that can provide both a common platform, links between platforms, but importantly an intellectual platform where these ideas can mix. These workshops and conferences have inspired two projects that both used acoustic performance as a design driver. The Smithsonian Institution Courtyard Enclosure and the Manufacturing Parametric Acoustic Surfaces (MPAS) installation at SmartGeometry 2010 are presented as examples of projects that used sound simulation parametric modeling to create acoustically performance driven architecture.
series journal
last changed 2019/05/24 09:55

_id caadria2010_033
id caadria2010_033
authors Roupé, Mattias and Mikael Johansson
year 2010
title Supporting 3D city modelling, collaboration and maintenance through an open-source revision control system
doi https://doi.org/10.52842/conf.caadria.2010.347
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 347-356
summary The creation of a 3D city model is usually a very time-consuming process and due to the constant development of the city it also has to be updated accordingly. One of the problems with large 3D city models is that they contain a huge amount of data that has to be stored and processed when it is used. The storage and management of the models are therefore a very important issue. The management issue is often that many people are collaborating and working on the 3D city model at the same time and are located at physically different locations. In this paper we present an application for collaboration, maintenance and storing of 3D city models using an open-source subversion controlled system. It is a client server based with a file-based structure on the client side. This system is not as complex as the Oracle database and is not limited to a specific file format. We have integrated the revision control system into our VR application but it is also possible to have external revision control using a default file manager, such as Explorer in Microsoft Windows. The system has been tested in three different virtual reality projects, all applied to urban planning.
keywords Collaboration; 3D city modelling; management; visualisation; virtual reality
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2010_347
id sigradi2010_347
authors de Souza, Santos Taís; Leão de Amorim Arivaldo
year 2010
title Modelos dinâmicos para visualização arquitetônica e urbana: limites e possibilidades [Dynamic models for urban and architectural visualization: limits and possibilities]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 347-350
summary In this article we discuss the use of photographic panoramas in the capture of urban space and architecture. The picture is a dynamic and interactive model, which has been used as a tool that assists the apprehension of space, due to its high level of realism. When associated with the virtual tour, this tool is potentialized due to the amount of information that can be added to the application. To illustrate this analysis, two examples were offered at different scales: one aimed at the capture of urban spaces and the second aimed at architectural spaces. In doing so it was possible to compare results and discuss the potential of the tool.
keywords dynamic models; urban visualization, interactivity, virtual tour, photographic panoramas
series SIGRADI
email
last changed 2016/03/10 09:50

_id sigradi2010_281
id sigradi2010_281
authors Granero, Adriana Edith; Garcia Alvarado Rodrigo
year 2010
title Flujo energético en las etapas tempranas del proceso de diseño arquitectónico y la importancia de generar aprendizajes significativos [Energy flow in early stages of architectural design process, and the importance of creating meaningful learning]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 281-284
summary This proposal seeks to stimulate energy conceptualization in the early stages of architectural design through the visualization of energy conditions as a dialogue in initial design configurations that is based on the integration of two software tools to facilitate meaningful learning. Students today have analytical intelligence that they have acquired through teaching themselves, and this has developed their creativity and their experiential - contextual practice; this permits effective interpretation of symbolic cognition. Digital tools of building, information modeling, and energy analysis can be related to specific features that promote this integrated design learning.
keywords KEY WORDS: performance views, building information modeling, visual and thermal comfort, integrated design learning, efficiency andoptimization.
series SIGRADI
email
last changed 2016/03/10 09:52

_id ecaade2010_211
id ecaade2010_211
authors Hemmerling, Marco; Tiggemann, Anke
year 2010
title Emotive Spaces: Spatial interpretations based on the book “Der Ohrenzeuge” by Elias Canetti
doi https://doi.org/10.52842/conf.ecaade.2010.125
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.125-132
summary Focusing on a design methodology that is inspired by emotional conditions rather than rational specifications the paper describes the translation of literature into virtual spaces. In his book „Der Ohrenzeuge“ Elias Canetti describes 50 surreal characters, which were analyzed in the first step due to their anthropological features. The following interpretation of these featuresinto spatial qualities, using visualization software as an expressive medium, wasrealized by the definition of parameters for geometry, light, material and camera settings to achieve a spatial analogy of the given characters. The experimental approach led to a deeper understanding of spatial qualities in respect to atmospheric impressions and triggered at the same time the application of digital tools for an intuitive design process.
wos WOS:000340629400013
keywords Character; Atmosphere; Anthropological spaces; Visualization; Literature
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2010_133
id sigradi2010_133
authors Herrera, Pablo; Dreifuss Cristina
year 2010
title Visualización y diagramas de material bibliográfico complejo [Visualization and diagrams of complex bibliographic material]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 133-136
summary In this paper we present a method of synthesizing data in the narrative discourse of two architecture publications, in order to analyze, compare and explore to what extent it is possible to understand a book on different abstract levels using static data. The information in the book is reorganized and shown in different diagrams, used as a didactic visualization method. This allows the representation of a set of kinetic information that cannot be perceived simultaneously.
keywords diagrams, visualization, data base, information architecture
series SIGRADI
email
last changed 2016/03/10 09:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_93249 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002