CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 452

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2010_053
id caadria2010_053
authors Doumpioti, C.
year 2010
title Fibre composite systems: stress as growth-promoting agent
doi https://doi.org/10.52842/conf.caadria.2010.575
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 575-584
summary The main intention of this paper is to propose a theoretical framework for an integrated design methodology which incorporates natural morhogenetic principles for the realisation of fibre composite structures. Stress, in these processes, becomes the driving force of shape modification and fibre articulation, while the material thresholds become a driver of generative evolution. The inferences and results of such an approach will be looked into using a case study of a composite monocoque shell bridge design.
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2010_167
id ecaade2010_167
authors Kunze, Antje; Schmitt, Gerhard
year 2010
title A Conceptual Framework for the Formulation of Stakeholder Requirements
doi https://doi.org/10.52842/conf.ecaade.2010.697
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.697-705
summary We need to face challenging needs for the planning of sustainable future cities. New methods in urban simulation enhance significantly the early urban design phase. However, these promising methods will only be sustainable if they consider stakeholder participation from the very beginning. Therefore we propose a conceptual framework for the formulation of stakeholder requirements, which enables the iterative modification of an urban model inside participatory workshops. A special emphasis concentrates on environmental, social and economical factors. The requirements posed by the stakeholders are instantly transferred into urban design patterns. Each single pattern stands for a solution for a specific problem that is integrated and visualized in a procedural model. Our goal is to create a participatory process that takes advantages by the use of comprehensive urban design patterns. The results are integrated within an interactive procedural model that communicate the most important guidelines for the planning of sustainable future cities.
wos WOS:000340629400075
keywords Decision-making process; Stakeholder participation; Shape grammars; Urban patterns; Urban planning
series eCAADe
email
last changed 2022/06/07 07:52

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20108206
id ijac20108206
authors Bravo, Germán; Rafael Villazón, Augusto Trujillo, Mauricio Caviedes
year 2010
title Authoring Tools for KOC - Concepts and Pedagogical Use
source International Journal of Architectural Computing vol. 8 - no. 2, 183-200
summary One of the main problems of teachers aiming to teach the construction techniques used in to build a building is the lack of practical examples to show to their students. In order to be useful, these examples must come from real projects or even better the teachers may take their students to constructions sites, but this latter option is not always available and may be dangerous. To deal with this problem, Los Andes University has committed the construction of a knowledge repository containing information gathered from real projects and semantically described, in order to provide easy access to its content and in the language of people of construction. This project is called KOC, standing for Knowledge Objects of Construction, which uses an ontology to describe semantically the data contained in the repository. Being the pedagogical objective of the project, it is important to provide the teachers with additional tools to generate new knowledge objects, based on existing knowledge objects in the repository. This paper presents three composition tools for KOC: a complex objects composer issued from structured searches, a constructive processes composer and a case study composer, all of them aiming the improvement of learning quality in the technical area of building construction at the architecture and engineering schools. The paper also shows some examples of knowledge objects and how KOC is been used in the courses of the Architecture Department of Los Andes.
series journal
last changed 2019/05/24 09:55

_id architectural_intelligence2023_10
id architectural_intelligence2023_10
authors Cheng Bi Duan, Su Yi Shen, Ding Wen Bao & Xin Yan
year 2023
title Innovative design solutions for contemporary Tou-Kung based on topological optimisation
doi https://doi.org/https://doi.org/10.1007/s44223-023-00028-x
source Architectural Intelligence Journal
summary Tou-Kung, which is pronounced in Chinese and known as Bracket Set (Liang & Fairbank, A pictorial history of Chinese architecture, 1984), is a vital support component in the Chinese traditional wooden tectonic systems. It is located between the column and the beam and connects the eave and pillar, making the heavy roof extend out of the eaves longer. The development of Tou-Kung is entirely a microcosm of the development of ancient Chinese architecture; the aesthetic structure and Asian artistic temperament behind Tou-Kung make it gradually become the cultural and spiritual symbol of traditional Chinese architecture. In the contemporary era, inheriting and developing Tou-Kung has become an essential issue. Several architects have attempted to employ new materials and techniques to integrate the traditional Tou-Kung into modern architectural systems, such as the China Pavilion at the 2010 World Expo and Yusuhara Wooden Bridge Museum. This paper introduces the topological optimisation method bi-directional evolutionary structural optimisation (BESO) for form-finding. BESO method is one of the most popular topology optimisation methods widely employed in civil engineering and architecture. Through analyzing the development trend of Tou-Kung and mechanical structure, the authors integrate 2D and 3D optimisation methods and apply the hybrid methods to form-finding. Meanwhile, mortise and tenon joint used to create stable connections with components of Tou-Kung are retained. This research aims to design a new Tou-Kung corresponding to “structural performance-based aesthetics”. The workflow proposed in this paper is valuable for Architrave and other traditional building components.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id acadia10_218
id acadia10_218
authors Chok, Kermin; Donofrio, Mark
year 2010
title Structure at the Velocity of Architecture
doi https://doi.org/10.52842/conf.acadia.2010.218
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 218-226
summary This paper outlines a digital design workflow, utilized by the authors, which actively links the geometry platforms being utilized by architects with tools for structural analysis, design, form-finding, and optimization. This workflow leads to an accelerated generation and transfer of information to help guide and inform the design process. The engineering team is thus empowered to augment the architect’s design by ensuring that the design team is conscious of the structural implications of design decisions throughout the design process. A crucial element of this design process has been the dynamic linkage of parametric geometry models with structural analysis and design tools. This reduces random errors in model generation and allows more time for critical analysis evaluation. However, the ability to run a multitude of options in a compressed time frame has led to ever increasing data sets. A key component of this structural engineering workflow has become the visualization and rigorous interpretation of the data generated by the analysis process. The authors have explored visualization techniques to distill the complex analysis results into graphics that are easily discernable by all members of the design team.
keywords Workflows, Structure, Collaboration, Visualizations, Analysis
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia10_258
id acadia10_258
authors Doumpioti, Christina; Greenberg, Evan L.; Karatzas, Konstantinos
year 2010
title Embedded Intelligence: Material Responsiveness in Façade Systems
doi https://doi.org/10.52842/conf.acadia.2010.258
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 258-262
summary This paper presents recent research for new mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on insect and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The proposed façade system uses integrated sensors and actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to manufacturing methods and material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli, and ultimately, effective performance of the whole system.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2010_166
id ecaade2010_166
authors Geyer, Philipp; Buchholz, Martin
year 2010
title System-Embedded Building Design and Modeling: Parametric systems modeling of buildings and their environment for performance-based and strategic design
doi https://doi.org/10.52842/conf.ecaade.2010.641
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.641-650
summary The paper proposes Parametric Systems Modeling (PSM) as a tool for building and city planning. The outlined method is based on the Systems Modeling Language (SysML) and is intended for design, dimensioning, and optimization of buildings and cities as systems. The approach exceeds the geometric approach, considers additional information from physics, technology, as well as biology, and provides a basis for multidisciplinary analyses and simulations. Its application aims at the exploration of innovative sustainable design solutions at system level. The proposal of an innovative buildinggreenhouse-city system serves to illustrate the approach. Features of this system are closed water cycles, renewable energy use, thermo-chemical energy storage and transport of energy for heating and cooling purposes on the base of desiccants, as well as recycling of CO2 , accumulation of biomass and related soil improvement.
wos WOS:000340629400069
keywords Parametric systems modeling; Systems design and engineering; Sustainable city system; City-integrated greenhouse
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2010_048
id caadria2010_048
authors Gu, Ning; Vishal Singh and Xiangyu Wang
year 2010
title Applying augmented reality for data interaction and collaboration in BIM
doi https://doi.org/10.52842/conf.caadria.2010.511
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 511-520
summary Building Information Modelling (BIM) is expected to enable efficient collaboration, improved data integrity, distributed and flexible data sharing, intelligent documentation, and high-quality outcome, through enhanced performance analysis, and expedited multi-disciplinary planning and coordination. Despite these apparent benefits, the collaboration across the architecture, engineering and construction (AEC) disciplines is largely based on the exchange of 2D drawings. This paper reports the findings from a research project that aims at developing measures to enhance BIM-based collaboration in the AEC industry. Based on focus group interviews with industry participants and case studies of BIM applications, visualisation was identified as an interactive platform across the design and non-design disciplines. It is argued that visualisation can enhance the motivation for BIM-based collaboration through integration of advanced visualisation techniques such as virtual reality (VR) and augmented reality (AR). An AR interface for a BIM server is also presented and discussed in the paper. AR can open up potential opportunities for exploring alternatives to data representation, organisation and interaction, supporting seamless collaboration in BIM.
keywords BIM; augmented reality; design collaboration
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia11_372
id acadia11_372
authors James, Anne; Nagasaka, Dai
year 2011
title Integrative Design Strategies for Multimedia in Architecture
doi https://doi.org/10.52842/conf.acadia.2011.372
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 372-379
summary Multidisciplinary efforts that have shaped the current integration of multimedia into architectural spaces have primarily been conducted by collaborative efforts among art, engineering, interaction design, informatics and software programming. These collaborations have focused on the complexities of designing for applications of multimedia in specific real world contexts. Outside a small but growing number of researchers and practitioners, architects have been largely absent from these efforts. This has resulted in projects that deal primarily with developing technologies augmenting existing architectural environments. (Greenfield and Shepard 2007)This paper examines the potential of multimedia and architecture integration to create new possibilities for architectural space. Established practices of constructing architecture suggest creating space by conventional architectural means. On the other hand, multimedia influences and their effect on the tectonics, topos and typos (Frampton 2001) of an architectural space (‘multimedia effects matrix’) suggest new modes of shaping space. It is proposed that correlations exist between those two that could inform unified design strategies. Case study analyses were conducted examining five works of interactive spaces and multimedia installation artworks, selected from an initial larger study of 25 works. Each case study investigated the means of shaping space employed, according to both conventional architectural practices and the principles of multimedia influence (in reference to the ‘multimedia effects matrix’) (James and Nagasaka 2010, 278-285). Findings from the case studies suggest strong correlations between the two approaches to spatial construction. To indicate these correlations, this paper presents five speculative integrative design strategies derived from the case studies, intended to inform future architectural design practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia10_203
id acadia10_203
authors Jaskiewicz, Tomasz
year 2010
title (In:)forming Interactive Architectural Systems, Case of the xMAiA Meta-model
doi https://doi.org/10.52842/conf.acadia.2010.203
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 203-210
summary This paper positions the domain of interactive architecture (iA) and searches for an appropriate model for structure and processing of information in the design and operation of such architecture. It is shown that there are different approaches to ways in which iA system models can be defined, each with numerous advantages and disadvantages. However, due to complexity of encountered problems, application of such models can be only partially validated by simulation and hence their design is inherently dependent on creation of operational and experiential full-scale prototypes of the systems these models represent. Another observation is the lack of correspondence between existing iA models and other contemporary models of computation for architectural geometry, fabrication and engineering. A meta-model for extensible multi-agent interactive architecture (xMAiA) is consequently proposed as a remedy to this situation. xMAiA meta-model is aimed to provide an open framework for integrated evolution, development and operation of interactive architectural systems. It delivers an extensible platform, in which diverse, project-specific models and approaches can be implemented, tested, and further evolved. Such a platform has the potential to empower agile development and operation of interactive architectural ecologies, as well as to substantially facilitate integration of creative design and experiential prototyping from day-1 of project design and development cycle. An example application conforming to the xMAiA meta-model is consequently presented and illustrated with a case study project performed in the university education context.
keywords multi agent systems, interactive architecture, responsive architecture, design tools
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaade2014_035
id ecaade2014_035
authors Kate_ina Nováková and Henri Achten
year 2014
title Do (not) sketch into my sketch - A comparison of existing tools
doi https://doi.org/10.52842/conf.ecaade.2014.2.237
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 237-243
summary Various computer-aided sketch tools can be used to support architectural designing (Tang, Lee, Gero, 2010) either individually in early stage of the process or in communication. We focus on the second mentioned. The goal of this paper is to give an overview of possible applications and mention the platforms which are supported. We explore the advantages or disadvantages of the tools and compare it with our newly developed application called ColLab sketch. With this application we hope in increasing speed and ease of graphic communication on one hand and testing architects demands on the other hand. We develop multiple criteria for evaluating the tools, while believing this paper could be of use to give a hint how to improve remote as well as co-located collaborative designing by sketch. Architectural designing is a very sensitive topic when it comes to sketching. Finally, we would like to compare the newly developed tool to this list and suggest improvements or experiments that help its finalizing.
wos WOS:000361385100025
keywords Sketching; collaboration; electronic devices; sketch applications
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2010_007
id caadria2010_007
authors Kwee, V.
year 2010
title A future through an architectural past? Designing an online information package for Al Jahili Fort
doi https://doi.org/10.52842/conf.caadria.2010.073
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 73-82
summary This paper details the process that students of UAE University’s Department of Architectural Engineering have undergone in packaging architectural heritage data online. Facilitated by the Abu Dhabi Authority for Cultural Heritage, students were introduced to historical data. They digitally reconstructed a historical fort in Al Ain, UAE – Al Jahili Fort – and investigated methods of packaging the gathered information online. Some observations and assessments (strengths and weaknesses) pertaining to the unique historical information packaging are highlighted in this paper. In addition to acquiring skills in producing architectural abstractions and graphic composition, students assessed several online interactive techniques. A set of rules or patterns were prescribed to enhance the clarity of chosen data. While providing insights to the processes of and considerations in designing an online information package for an architectural heritage project, the underlying objective is to question the possibilities and role necessary in sculpting the future of CAAD education to propel the discipline forward through the medium. What would be the implications? It also asserts the notion that digital space may be architectural education’s imminent next ‘final’ frontier.
keywords CAAD Education; Information Packaging; Architectural Heritage; Online Presentation
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia10_151
id acadia10_151
authors Menges, Achim
year 2010
title Material Information: Integrating Material Characteristics and Behavior in Computational Design for Performative Wood Construction
doi https://doi.org/10.52842/conf.acadia.2010.151
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 151-158
summary Architecture as a material practice is still predominantly based on design approaches that are characterized by a hierarchical relationship that prioritizes the generation of geometric information for the description of architectural systems and elements over material specific information. Thus, in the early design stage, the material’s innate characteristics and inherent capacities remain largely unconsidered. This is particularly evident in the way wood constructions are designed today. In comparison to most construction materials that are industrially produced and thus relatively homogeneous and isotropic, wood is profoundly different in that it is a naturally grown biological tissue with a highly differentiated material makeup . This paper will present research investigating how the transition from currently predominant modes of representational Computer Aided Design to algorithmic Computational Design allows for a significant change in employing wood’s complex anisotropic behaviour, resulting from its differentiated anatomical structure. In computational design, the relation between procedural formation, driving information, and ensuing form, enables the systematic integration of material information. This materially informed computational design processes will be explained through two research projects and the resultant prototype structures. The first project shows how an information feedback between material properties, system behaviour, the generative computational process, and robotic manufacturing allows for unfolding material-specific gestalt and tapping into the performative potential of wood. The second project focuses on embedding the unique material information and anatomical features of individual wooden elements in a continuous scanning, computational design and digital fabrication process, and thus introduces novel ways of integrating the biological variability and natural irregularities of wood in architectural design.
keywords Computational Design, Digital Fabrication, Material Properties, Behavioural Modelling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2010_052
id caadria2010_052
authors Okuda, S. and Z. Ou
year 2010
title Bio-shell (biodegradable vacuum-formed modularised shelter)
doi https://doi.org/10.52842/conf.caadria.2010.565
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 565-574
summary This paper demonstrates how digitally fabricated vacuum-formed components can provide a new type of efficient construction applicable to architecture. Vacuum forming has the advantage of rapid mass-production capability of 3D curved forms. Recent digital fabrication technologies, such as 3D CAD and CNC machining, have dramatically reduced the cost and time for making the mould. In combination with biodegradable plastic, such as PLA (poly lactic acid) made of biopolymer, it could open up new type of sustainable construction system, which is applicable for temporal disaster housings or exhibition booths.
keywords Digital fabrication; biodegradable; vacuum forming; fi nite element; lightweight structure
series CAADRIA
email
last changed 2022/06/07 08:00

_id ijac20108306
id ijac20108306
authors Peters, Brady
year 2010
title Acoustic Performance as a Design Driver: Sound Simulation and Parametric Modeling using SmartGeometry
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 337-358
summary Acoustic performance is an inevitable part of architectural design. Our sonic experience is modified by the geometry and material choices of the designer. Acoustic performance must be understood both on the level of material performance and also at the level of the entire composition. With new parametric and scripting tools performance driven design is possible. Parametric design and scripting tools can be used to explore not only singular objectives, but gradient conditions. Acoustic performance is often thought of in terms of singular performance criteria. This research suggested acoustic design can be understood in terms of gradients and multiple performance parameters. Simulation and modeling techniques for computational acoustic prediction now allow architects to more fully engage with the phenomenon of sound and digital models can be studied to produce data, visualizations, animations, and auralizations of acoustic performance. SmartGeometry has promoted design methods and educational potentials of a performance-driven approach to architectural design through parametric modeling and scripting. The SmartGeometry workshops have provided links between engineering and architecture, analysis and design; they have provided parametric and scripting tools that can provide both a common platform, links between platforms, but importantly an intellectual platform where these ideas can mix. These workshops and conferences have inspired two projects that both used acoustic performance as a design driver. The Smithsonian Institution Courtyard Enclosure and the Manufacturing Parametric Acoustic Surfaces (MPAS) installation at SmartGeometry 2010 are presented as examples of projects that used sound simulation parametric modeling to create acoustically performance driven architecture.
series journal
last changed 2019/05/24 09:55

_id acadia10_174
id acadia10_174
authors Sabin, Jenny E.
year 2010
title Digital Ceramics: Crafts-based Media for Novel Material Expression & Information Mediation at the Architectural Scale
doi https://doi.org/10.52842/conf.acadia.2010.174
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 174-182
summary Design research for digital ceramics commenced with the project, “Ground Substance” an experimental form produced in the Sabin+Jones LabStudio. The design team was led by Jenny E. Sabin and Andrew Lucia. Dr. Peter Lloyd Jones and Agne Taraseviciuete led the scientific team. Our design critic was Annette Fierro. The project was inspired by original biological research conducted at the Jones Laboratory, supervised by Dr. Peter Lloyd Jones and led by MD-PhD student Agne Taraseviciuete at the Institute for Medicine and Engineering, UPenn. This research was supported generously by the CMREF. Design and production of “Ground Substance” was supported generously by a UPenn Research and Development Grant awarded to the Sabin+Jones LabStudio.
series ACADIA
type panel paper
email
last changed 2022/06/07 07:58

_id caadria2010_051
id caadria2010_051
authors Stanton, C.
year 2010
title Material feedback in digital design tools
doi https://doi.org/10.52842/conf.caadria.2010.555
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 555-564
summary How do design tools feedback material behaviour to the designer? Digital design tools in use by designers today provide a rich environment for design of form but offer little feedback of the material that ultimately realise that form. This lack of materialism limits the value of the design tool and the exploration of the design space where material behaviour can provide important feedback. This work examines the modes and value of material feedback in design using systems engineering principles, illustrates the challenge with current tools and explores a prototype simulative interface. It approaches the problem from a new perspective of simulating physical manipulation and experiment rather than existing CAD paradigms.
keywords Interactive design tools; material simulation
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_790922 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002