CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 233

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2010_43
id sigradi2010_43
authors Clayton, Mark J.; Ozener Ozan; Haliburton James; Farias Francisco
year 2010
title Towards Studio 21: Experiments in Design Education Using BIM
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 43-46
summary Explorations conducted in university - based design studios suggest that Building Information Modeling (BIM) technology invites the adoption of a dramatically different design process. In contrast to conventional process rooted in successive refinement of initial abstractions and dependence on tacit knowledge, the Studio 21 BIM - aided process relies upon a complete and comprehensive base case and subsequent alternative schemes that are subjected to explicit analysis to support choice of the final design. The Studio 21 process can boost the objective level of performance that is achieved. It is teachable and may be a better process for addressing 21st century imperatives.
keywords design, process, education, BIM, studio
series SIGRADI
email
last changed 2016/03/10 09:49

_id ijac20108205
id ijac20108205
authors Holzer, Dominik
year 2010
title Optioneering in Collaborative Design Practice
source International Journal of Architectural Computing vol. 8 - no. 2, 165-182
summary The discourse about computational support of collaborative architectural design has in recent years mainly focused on the topic of Building Information Modeling (BIM). In this paper, the method of ‘optioneering’ is presented that, in contrast to current BIM capabilities, assists designers and consultants to resolve design problems through integrated analyses across disciplines in the early stages of design. Although the method of ‘optioneering’ has only recently been adapted in building practice, it has been preceded by manifold efforts by researchers in the field of design and computation over the past two decades.At the end of this paper the computational framework ‘DesignLink’ will be discussed.‘DesignLink’ supports ‘optioneering’ in the design stages before BIM becomes effective and it is currently being developed and used to support performance optimisation of building projects in practice.
series journal
last changed 2019/05/24 09:55

_id sigradi2010_286
id sigradi2010_286
authors Kang, Julian
year 2010
title BIM Class Project for Learning by Doing
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 286-289
summary Due to the lack of trained individuals in the construction industry and to its potential impact on construction planning, Building Information Modeling (BIM) has been one of the popular topics taught in academic institutions in the U.S. in recent years. Although it is necessary to master multiple BIM applications in order to fully employ BIM in construction, teaching college students all of these applications in one semester is challenging. This paper presents an industry - sponsored class project developed to help students learn the principles of BIM in a short time. It also presents the opportunities and challenges you may encounter in implementing this class project.
keywords BIM, Construction Management
series SIGRADI
last changed 2016/03/10 09:53

_id acadia10_133
id acadia10_133
authors Kim, Jong Bum, Clayton, Mark J.
year 2010
title Support Form-based Codes with Building Information Modeling – The Parametric Urban Model Case Study
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 133-138
doi https://doi.org/10.52842/conf.acadia.2010.133
summary This study aims to develop the parametric urban model to support Form-based Codes (FBCs) by using Object-Oriented Parametric Modeling (OOPM) and Building Information Modeling (BIM). FBCs have been used to substitute conventional land-use and zoning regulations in the United States. In many cities, FBCs were implemented successfully, but excessive design constraints, difficult code making process, and missing density of FBCs are criticized. As a response to the increasing needs of parametric modeling approaches in the urban design domain, we applied BIM and OOPM techniques in two case studies. We conclude that BIM and OOPM have a great potential to support planning and design processes, and that the parametric urban model allows FBCs to be more flexible, interpretable, and interoperable.
keywords Form-based Codes, Building Information Modeling, Object-Oriented Parametric Modeling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2010_136
id ecaade2010_136
authors Yan, Wei
year 2010
title Teaching Building Information Modeling at Undergraduate and Graduate Levels
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.97-106
doi https://doi.org/10.52842/conf.ecaade.2010.097
wos WOS:000340629400010
summary The paper presents our experience and findings of teaching Building Information Modeling (BIM) at both the undergraduate and graduate levels. At the undergraduate level for Environmental Design students, basic BIM concept and modeling were exercised. At the graduate level for Ph.D. and MS students in Architecture, MArch students, and MS students in Construction Science, advanced topics including parametric design, database, Application Programming Interface (API), and building lifecycle applications of BIM were introduced. We suggest an incremental BIM skill development with a course agenda, for example: first year college – modeling; second year and third year – simulation and analysis for building systems; and fourth year and above until graduate level – customization. Detailed description of the courses, strategies, student projects, findings, and discussions are given in the paper.
keywords Building information modeling; Education; Undergraduate; Graduate
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2010_028
id caadria2010_028
authors Chellappa, J. and H.-J. Park
year 2010
title BIM + healthcare: on the view of a primary healthcare renovation project
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 293-302
doi https://doi.org/10.52842/conf.caadria.2010.293
summary Currently BIM is at the forefront of the building industry. While useful for various building types the definitive nature of healthcare design benefits from the BIM process largely in comparison to other building types. In this paper BIM is employed for phasing the design process of the healthcare project, creating modelling prototypes and making reference to a baseline model in order to increase the overall success of the healthcare design project.
keywords Building information modelling; healthcare; evidence-based design; prototype; baseline model
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia10_211
id acadia10_211
authors Crawford, Scott
year 2010
title A Breathing Building Skin
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 211-217
doi https://doi.org/10.52842/conf.acadia.2010.211
summary This paper details an initial exploration into the development of a breathing building skin. This research proposes a system of diaphragms as an alternative to the use of fans for distributing volumes of air. The driving concepts for this project are the three types of evolutionary adaptation: flexibility, acclimation, and learning. Of particular interest is how these biological concepts relate to architectural design. Parametric modeling was used throughout the project to study a family of folding geometry. This allowed for the iterative development of a complex part that is capable of being manufactured from a single sheet of material. Preliminary calculations point to this system being several times more energy efficient than a fan at moving a given volume of air per Watt of electricity. This research is significant as it puts forth a potentially energy efficient and highly integrated alternative to fans, while also illustrating a way of relating biological concepts of adaptation to architectural design.
keywords adaptation, responsive, kinetic, ventilation, space frame, parametric
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2010_166
id ecaade2010_166
authors Geyer, Philipp; Buchholz, Martin
year 2010
title System-Embedded Building Design and Modeling: Parametric systems modeling of buildings and their environment for performance-based and strategic design
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.641-650
doi https://doi.org/10.52842/conf.ecaade.2010.641
wos WOS:000340629400069
summary The paper proposes Parametric Systems Modeling (PSM) as a tool for building and city planning. The outlined method is based on the Systems Modeling Language (SysML) and is intended for design, dimensioning, and optimization of buildings and cities as systems. The approach exceeds the geometric approach, considers additional information from physics, technology, as well as biology, and provides a basis for multidisciplinary analyses and simulations. Its application aims at the exploration of innovative sustainable design solutions at system level. The proposal of an innovative buildinggreenhouse-city system serves to illustrate the approach. Features of this system are closed water cycles, renewable energy use, thermo-chemical energy storage and transport of energy for heating and cooling purposes on the base of desiccants, as well as recycling of CO2 , accumulation of biomass and related soil improvement.
keywords Parametric systems modeling; Systems design and engineering; Sustainable city system; City-integrated greenhouse
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2010_281
id sigradi2010_281
authors Granero, Adriana Edith; Garcia Alvarado Rodrigo
year 2010
title Flujo energético en las etapas tempranas del proceso de diseño arquitectónico y la importancia de generar aprendizajes significativos [Energy flow in early stages of architectural design process, and the importance of creating meaningful learning]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 281-284
summary This proposal seeks to stimulate energy conceptualization in the early stages of architectural design through the visualization of energy conditions as a dialogue in initial design configurations that is based on the integration of two software tools to facilitate meaningful learning. Students today have analytical intelligence that they have acquired through teaching themselves, and this has developed their creativity and their experiential - contextual practice; this permits effective interpretation of symbolic cognition. Digital tools of building, information modeling, and energy analysis can be related to specific features that promote this integrated design learning.
keywords KEY WORDS: performance views, building information modeling, visual and thermal comfort, integrated design learning, efficiency andoptimization.
series SIGRADI
email
last changed 2016/03/10 09:52

_id caadria2010_048
id caadria2010_048
authors Gu, Ning; Vishal Singh and Xiangyu Wang
year 2010
title Applying augmented reality for data interaction and collaboration in BIM
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 511-520
doi https://doi.org/10.52842/conf.caadria.2010.511
summary Building Information Modelling (BIM) is expected to enable efficient collaboration, improved data integrity, distributed and flexible data sharing, intelligent documentation, and high-quality outcome, through enhanced performance analysis, and expedited multi-disciplinary planning and coordination. Despite these apparent benefits, the collaboration across the architecture, engineering and construction (AEC) disciplines is largely based on the exchange of 2D drawings. This paper reports the findings from a research project that aims at developing measures to enhance BIM-based collaboration in the AEC industry. Based on focus group interviews with industry participants and case studies of BIM applications, visualisation was identified as an interactive platform across the design and non-design disciplines. It is argued that visualisation can enhance the motivation for BIM-based collaboration through integration of advanced visualisation techniques such as virtual reality (VR) and augmented reality (AR). An AR interface for a BIM server is also presented and discussed in the paper. AR can open up potential opportunities for exploring alternatives to data representation, organisation and interaction, supporting seamless collaboration in BIM.
keywords BIM; augmented reality; design collaboration
series CAADRIA
email
last changed 2022/06/07 07:51

_id ascaad2010_109
id ascaad2010_109
authors Hamadah, Qutaibah
year 2010
title A Computational Medium for the Conceptual Design of Mix-Use Projects
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 109-116
summary Mix use development is receiving wide attention for its unique sustainable benefits. Nevertheless, the planning and designing of successful mixed use projects in today's environment is a complex matrix of skill sets and necessary collaborations between various stakeholders and design professionals. From a design point of view, architects are required to manage and coordinate large information sets, which are many time at odds with one another. The expansive space of knowledge and information is at its best vague and substantially ill-structured. A situation that continues to overburden architects mental and intellectual ability to understand, address and communicate the design issue. In the face of this complex condition, designers are gravitating towards information modeling to manage and organize the expansive data. However, is becoming increasingly evident that current building information modeling applications are less suited for early design activity due to their interrupted and rigid workflows. Against this background, this paper presents a theoretical framework for a computational medium to support the designer during early phases of exploring and investigating design alternatives for mix-use projects. The focus is on the conjecture between programming and conceptual design phase; when uncertainty and ambiguity as at its maximum, and the absence of computational support continues to be the norm. It must be noted however, the aim of the medium is not to formulate or automate design answers. Rather, to support designers by augmenting and enhancing their ability to interpret, understand, and communicate the diverse and multi-faceted design issue. In literature on interpretation, Hans-Georg Gadamer explains that understanding is contingent on an act of construction. To understand something is to construct it. In light of this explanation. To help designers understand the design issue, is to help them construct it. To this end, the computational medium discussed in this paper is conceived to model (construct) the mix-use architectural program. In effect, turning it into a dynamic and interactive information model in the form of a graph (network). This is an important development because it will enable an entirely new level of interaction between the designer and the design-problem. It will allow the designer to gather, view, query and repurpose the information in novel ways. It will offer the designer a new context to foster knowledge and understanding about the ill-structured and vague design issue. Additionally, the medium would serve well to communicate and share knowledge between the various stakeholders and design professionals. Central to the discussion are two questions: First, how can architects model the design program using a graph? Second, what is the nature of the proposed computational medium; namely, its components and defining properties?
series ASCAAD
email
last changed 2011/03/01 07:36

_id ascaad2010_127
id ascaad2010_127
authors Hubers, Hans
year 2010
title Collaborative Parametric BIM
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 127-134
summary The paper will be focussing on a number of digital design tools used in [our groups credentials]. A new laboratory called […] is developed with Virtual Reality for collaborative architectural design. A brief description of the systems and how they are used to support a design team is given. Synchronic and a-synchronic, local and inter-local communication is made possible. Methods for introducing sustainability in the digital design process and user participation over the Internet will be discussed. The results of the author’s PhD research “Collaborative architectural design in virtual reality” are used to develop a new approach in which team members use their own specific software. Swarm design applications developed in Virtools are used at the start of a project. The objects in the swarm can be urban and architectural functional volumes. Examples of the first are houses, offices, factories, roads and water ways. Examples of the second are working, dining, shopping and waiting spaces. Relations between the functional volumes with or without constraints make the functional volumes swarm to find equilibrium. Everything is dynamic, meaning that relations and functional volumes can change any time. Alternatives can be developed using different values for these parameters and by top-down intervention. When the final global layout has been chosen, using a criteria matrix with sustainability criteria to be judged by all participants, including the future users, a next phase is started amongst professionals using parametric design software. A study into different types of parametric design software makes clear why object parametric software can be used for IFC based BIM, while the more interesting process parametric software can not. To make this clear a pragmatic description of the IFC format is given with a simple example of such a file. Future research will be proposed in which applications of different disciplines are connected through the application programming interfaces, while integrating as much as possible the building information and knowledge in the IFC format.
series ASCAAD
type normal paper
email
last changed 2011/03/01 07:48

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_139
id acadia10_139
authors Miller, Nathan
year 2010
title [make]SHIFT: Information Exchange and Collaborative Design Workflows
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 139-144
doi https://doi.org/10.52842/conf.acadia.2010.139
summary This paper explores design processes requiring the invention and implementation of customized workflows for the optimization of design information exchange. Standard workflows in design software are typically dependent upon the use of proprietary file formats to communicate design intent across the design team. Software platforms promote “one-stop-shop” proprietary approaches to BIM where all team members and consultants ideally operate within a single model environment and store information within a single file format. While the ‘single model’ approach can be effective under some circumstances, this approach is often found to be limiting when the design process calls for the integration of other design toolsets and delivery processes. This is especially true for large complex projects where multiple participants with different software requirements need to collaborate on the same design. In these cases, various non-standard ways of working are often implemented, resulting in a new means of communicating design and building information across a team. This paper will outline the impact customized workflows have on the design process at NBBJ and evaluate their potential for leading to more innovative design and integrated teams. The first study will explore and evaluate the communication and collaborative process that took place in the design development and construction documentation stages of the Hangzhou Stadium. The second study will be an overview of ongoing investigation and experimentation into customized workflows for team and data integration.
keywords team integration, international practice, parametric methods
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id sigradi2009_833
id sigradi2009_833
authors Stoyanov, Momchil
year 2009
title Análise lumínica virtual de elementos construídos por meio de programação: exemplo de aplicação em software do tipo BIM [ Analysis of Virtual Elements Constructed by Means of Programming: The Example of BIM-Application Software]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Daylighting is an important part of designing sustainably. Daylighting is the use of natural light for primary interior illumination. This reduces our need for artificial light within the space, thus reducing internal heat gain and energy use. Direct sunlight, once it enters the building, is not only light but heat, and that additional heat will need to be taken into account in your energy analysis." While Autodesk Revit Architecture 2010 (ARA) itself cannot perform the actual analysis, there are some ways to do that. This papper focuses on the study of parametric modeling using a BIM tool for daylighting analysis. This paper presents the first part of the building method of LUME, a plug-in maked whit C# programming language in Microsoft Visual Studio 2010 and ARA Software Developer Kit (SDK) package. The script accepts as its input a standard three dimensional model of building opening and his position on space.
keywords Script language; BIM; Revit Architecture; Energy analysis; Daylighting; Parametric design process
series SIGRADI
email
last changed 2016/03/10 10:01

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
doi https://doi.org/10.52842/conf.acadia.2010.327
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ascaad2010_039
id ascaad2010_039
authors Almusharaf, Ayman M.; Mahjoub Elnimeiri
year 2010
title A Performance-Based Design Approach for Early Tall Building Form Development
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 39-50
summary This paper presents a methodological interactive design approach within which structure is integrated into tall building form development. The approach establishes a synergy between generative and analytical tools to allow for parallel interaction of the formal and structural design considerations during the conceptual design phase. An integration of the associative modeling system, Grasshopper, and the structural analysis tool, ETABS was established, and a bi-directional feedback link between the two tools was initiated to guide the iterative from generation process. A design scenario is presented in this paper to demonstrate how the parametric generation and alteration of architectural form can be carried out based on instant feedback on the structural performance. Utilizing such a tool, architects can not only develop improved understanding of structural needs, but also realize their formal ideas structurally and materially.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ascaad2010_213
id ascaad2010_213
authors Babsail, Mohammad; Mahjoub Elnimeiri
year 2010
title A Computer Process for Investigating Wind Power Production in Building Integrated Wind Turbines
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 213-220
summary This paper reports on the computer process to be used in an ongoing research to investigate the effect of architectural parameters of tall buildings on the incorporation of wind turbines. The process combines a generative modeling tool (Grasshopper) and a performance based CFD tool (Virtualwind). The process is demonstrated on three typical tall building plan configurations. The wind speed was simulated at certain locations to demonstrate the ability of tall buildings to enhance the wind speed and thus maximize the energy produced by wind turbines located between twin towers. The process to predict wind power production is lastly listed.
series ASCAAD
email
last changed 2011/03/01 07:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_342804 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002