CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 453

_id acadia10_81
id acadia10_81
authors Marcos, Carlos L.
year 2010
title Complexity, Digital Consciousness and Open Form: A New Design Paradigm
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 81-87
doi https://doi.org/10.52842/conf.acadia.2010.081
summary Complexity as a result of improved design capabilities through the use of computer tools was introduced in the architectural debate since these became irreplaceable. On the other hand, not every designer is genuinely aware of the logical implications that the use of these tools may entail. Used as a simple emulation of enhanced traditional design tools—drawings and models, they do not alter the process of design significantly. However, the potential of such tools beyond their instrumentality introduces designers into the realm of digital consciousness. This paper analyzes complexity as an inherent quality of computer aided architectural design in relation to four different digitally conscious design strategies. First, the increase of complexity involved in digital architectural designs because of their potentiality to manage enormous amounts of differentiated information. Second, the complexity inherent to an open form such as parametric or generative designs may be defined. Third, the use of the computer as a smart partner involved in the design process —i.e., form finding strategies— rather than as a simple efficient machine able to repeat our abilities faster and more effectively in certain roles of the design process. Finally, it analyzes the possibility of generating parameterized typologies as a result of the openness of form, as well as the increased complexity that randomness may introduce in algorithmic design. The paper concludes with reflections on complexity vs. simplexity considering the fact that the simplicity characteristic of Modernism aesthetics and constructive values collide with the baroque formal complexity achieved in generative design.
keywords Digital consciousness, complexity, added information, open form, form finding, randomness
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2010_81
id sigradi2010_81
authors Rodrigues, da Silva Ana Cristina; Rodrigues Félix Neusa
year 2010
title Estabelecimento de referenciais para o ensino de projeto apoiado por Tecnologias de Informação e Comunicação (TICs), baseadas em plataformas livres [Project teaching and reference establishing, supported by open source Information Technologies (ITC´s) ]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 81-84
summary The possibility of including information and communication technologies (ICTs) to support teaching and learning project has been explored from different perspectives by researchers. This study intends to contribute to the establishment of reference for the construction of a new paradigm concerning the methodology for teaching of projects that are supported by free platforms. This research attempts to identify opportunities for simulation, interaction and collaboration that are provided by free platforms. The analysis of the results indicates that the possibility of interaction, collaboration and simulation that ICTs offer act as a support for the methodology of teaching/learning projects.
keywords teaching/learning; architectural design; information technologies and communication; platforms free
series SIGRADI
email
last changed 2016/03/10 09:59

_id acadia10_313
id acadia10_313
authors Banda, Pablo
year 2010
title Parametric Propagation of Acoustical Absorbers
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 313-319
doi https://doi.org/10.52842/conf.acadia.2010.313
summary The following paper deals with a performance-driven morphogenetic design task to improve the conditions of room acoustics, using as a case study the material laboratory of the School of Architecture at Federico Santa Maria University of Technology. Combining contemporary Parametric Modeling techniques and a Performance- Based approach, an automatic generative system was produced. This system generated a modular acoustic ceiling based on Helmholtz Resonators. To satisfy sound absorption requirements, acoustic knowledge was embedded within the system. It iterates through a series of design sub-tasks from Acoustic Simulation to Digital Fabrication, searching for a suitable design solution. The internal algorithmic complexity of the design process has been explored through this case study. Although it is focused on an acoustic component, the proposed design methodology can influence other experiences in Parametric Design.
keywords Parametric Modeling, Sound Absorption & Acoustic Knowledge, Performance-Based Design, Design Task, Scripting, Digital Fabrication, Custom Tools, Honeycomb.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia10_203
id acadia10_203
authors Jaskiewicz, Tomasz
year 2010
title (In:)forming Interactive Architectural Systems, Case of the xMAiA Meta-model
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 203-210
doi https://doi.org/10.52842/conf.acadia.2010.203
summary This paper positions the domain of interactive architecture (iA) and searches for an appropriate model for structure and processing of information in the design and operation of such architecture. It is shown that there are different approaches to ways in which iA system models can be defined, each with numerous advantages and disadvantages. However, due to complexity of encountered problems, application of such models can be only partially validated by simulation and hence their design is inherently dependent on creation of operational and experiential full-scale prototypes of the systems these models represent. Another observation is the lack of correspondence between existing iA models and other contemporary models of computation for architectural geometry, fabrication and engineering. A meta-model for extensible multi-agent interactive architecture (xMAiA) is consequently proposed as a remedy to this situation. xMAiA meta-model is aimed to provide an open framework for integrated evolution, development and operation of interactive architectural systems. It delivers an extensible platform, in which diverse, project-specific models and approaches can be implemented, tested, and further evolved. Such a platform has the potential to empower agile development and operation of interactive architectural ecologies, as well as to substantially facilitate integration of creative design and experiential prototyping from day-1 of project design and development cycle. An example application conforming to the xMAiA meta-model is consequently presented and illustrated with a case study project performed in the university education context.
keywords multi agent systems, interactive architecture, responsive architecture, design tools
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2010_058
id caadria2010_058
authors Schneider, Sven; Nancy Richter, Frank Petzold, Reinhard König
year 2010
title Open architectural design: an approach to managing complexity and uncertainty in an open design process
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 629-638
doi https://doi.org/10.52842/conf.caadria.2010.629
summary By open exchange of ideas and artifacts and non apriori hierarchical processes, Open Strategies enable a better usage of distributed resources, and the release of more creative potential. Applying these Open Strategies to the architectural design process, is goal of our project. The technical basis for our research is FREAC, a software framework developed in-house which provides a collaboration space for co-operation between different users and tools. This framework is designed not just for exchanging the outcome of the design process but also for opening up the design process itself and making it more transparent. Such highly open and distributed design processes, however, also present new problems and uncertainties which need to be taken into account in order to reach successful design outcomes. As a result proposals for the management of such processes need to be developed that facilitate collaborative work but do not unnecessarily constrain the inherent complexity of the design process. The actor-network theory, and other different management concepts, provides a theoretical underpinning for our approach. The project is a collaboration between the fields of computer science in architecture and media management.
keywords Collaboration; open design process; actor-network theory; software framework
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2010_029
id caadria2010_029
authors Baerlecken, Daniel; Martin Manegold, Judith Reitz and Arne Kuenstler
year 2010
title Integrative parametric form-finding processes
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 303-312
doi https://doi.org/10.52842/conf.caadria.2010.303
summary The recent developments in digital technologies and contemporary design tools are initiating new approaches of form-finding based on parametric development of multiple geometries with simultaneous consideration of various aspects. This paper focuses on the use of advanced parametric CAD systems and reformulated construction logics to enhance the potential and possibilities of form finding processes. This approach is exemplified through the “Greenhouse Trauttmansdorff project”. The project demonstrates a form finding approach which is based on defined parameters that not only fulfil aesthetic and functional aspects, but simultaneously take structural properties and the resulting sun shading behaviour into account. We will explore within this paper how – next to the functional and contextual building requirements – required illumination levels inside the greenhouse create a feedback loop between the structural system and its cladding system.
keywords parametric representations; digital technologies; digital fabrication; variable systems; load bearing construction
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia10_333
id acadia10_333
authors Blough, Lawrence
year 2010
title Digital Tracery: Fabricating Traits
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 333-339
doi https://doi.org/10.52842/conf.acadia.2010.333
summary Recently, prototyping enabled by CNC technology has found its way into design practice where concepts can be quickly and economically tested through multiple design iterations that closely approximate the realities of oneto- one construction. This has lead to the promise of renewed research in tectonics and constructional techniques where the traditional concepts of craft and the joint, that were once married to the hand, can be rediscovered through the agency of mass customization. If we apply the lineage of the trait—a representational and cognitive tool to marry complex form with the exigencies of construction—pedagogical approaches can be developed that extend the current interest in intricate surface, structural morphology and geometry towards a robust materiality rooted in componentry, the joint, and part-to-whole relationships. This paper will introduce several threads from the twentieth century that have informed these tendencies in contemporary design practice, emerging from the well spring of Viollet-le-Duc. The thesis is supported by undergraduate model-based research employing digital design and fabrication techniques.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2010_042
id caadria2010_042
authors Celento, David
year 2010
title Open-source, parametric architecture to propagate hyper-dense, sustainable urban communities: parametric urban dwellings for the experience economy
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 443-452
doi https://doi.org/10.52842/conf.caadria.2010.443
summary Rapid developments in societal, technological, and natural systems suggest profound changes ahead if research in panarchical systems (Holling, 2001) is to be believed. Panarchy suggests that systems, both natural and man-made, rise to the point of vulnerability then fail due to disruptive forces in a process of ‘creative destruction.’ This sequence allows for radical, and often unpredictable, renewal. Pressing sustainability concerns, burgeoning urban growth, and emergent ‘green manufacturing’ laws, suggest that future urban dwellings are headed toward Gladwell’s ‘tipping point’ (2002). Hyper-dense, sustainable, urban communities that employ open-source standards, parametric software, and web-based configurators are the new frontier for venerable visions. Open-source standards will permit the design, manufacture, and sale of highly diverse, inter-operable components to create compact urban living environments that are technologically sophisticated, sustainable, and mobile. These mass-customised dwellings, akin to branded consumer goods, will address previous shortcomings for prefabricated, mobile dwellings by stimulating consumer desire in ways that extend the arguments of both Joseph Pine (1992) and Anna Klingman (2007). Arguments presented by authors Makimoto and Manners (1997) – which assert that the adoption of digital and mobile technologies will create large-scale societal shifts – will be extended with several solutions proposed.
keywords Mass customisation; urban dwellings; open source standards; parametric design; sustainability
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2010_055
id caadria2010_055
authors Chen, Zi-Ru; Chung-Yang Wang, Pei-Chien Hung and Yu-Tung Liu
year 2010
title Preliminary tectonic phenomena of diversified architectural spatial forms in digital age
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 599-608
doi https://doi.org/10.52842/conf.caadria.2010.599
summary The research on tectonics in the architectural field began from the middle of nineteenth century and in recent twenty years digital technology gradually developed and permeated through the field of architecture. Liu and Lim (2006, 2009) integrated classic and digital tectonic factors a present framework of new tectonics. However, the previous studies related to the tectonics in this digital age were only on architectural cases that use a great deal of digital media. The research wants to know what and how the tectonic factors affect the different spatial forms of modern architecture and focused on a case study of the diversified spatial forms, orthogonal, folding and curving. The results show the classic tectonic thinking is imperative until now. It is critical to prove the significance of adding the new digital tectonic factors in digital age.
keywords Digital and classic tectonics; spatial form; digital media
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia10_218
id acadia10_218
authors Chok, Kermin; Donofrio, Mark
year 2010
title Structure at the Velocity of Architecture
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 218-226
doi https://doi.org/10.52842/conf.acadia.2010.218
summary This paper outlines a digital design workflow, utilized by the authors, which actively links the geometry platforms being utilized by architects with tools for structural analysis, design, form-finding, and optimization. This workflow leads to an accelerated generation and transfer of information to help guide and inform the design process. The engineering team is thus empowered to augment the architect’s design by ensuring that the design team is conscious of the structural implications of design decisions throughout the design process. A crucial element of this design process has been the dynamic linkage of parametric geometry models with structural analysis and design tools. This reduces random errors in model generation and allows more time for critical analysis evaluation. However, the ability to run a multitude of options in a compressed time frame has led to ever increasing data sets. A key component of this structural engineering workflow has become the visualization and rigorous interpretation of the data generated by the analysis process. The authors have explored visualization techniques to distill the complex analysis results into graphics that are easily discernable by all members of the design team.
keywords Workflows, Structure, Collaboration, Visualizations, Analysis
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia10_117
id acadia10_117
authors Crotch, Joanna; Mantho, Robert; Horner, Martyn
year 2010
title Social Spatial Genesis: Activity Centered Space Making
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 117-124
doi https://doi.org/10.52842/conf.acadia.2010.117
summary Digital technologies and processes have been used to generate architectural form for over two decades. Recent advances in digital technologies have allowed virtual digital environments to be constructed from physical movement. But can a bridge that connects the physical and virtual realms be developed? Can this, currently arbitrary form making be grounded in human activity and subsequently be integrated in to real time, space, and place. This research asks how space generated from the process of digital morphogenesis can be related to meaning beyond just the creation of form. Existing research asks how new form can be discovered, or what material and structural possibilities can be derived from form, through these morphological processes. The aim of this research project is to complete the loop, physical–virtual–physical, and to connect these digital processes to meaning through human activity. Its aim is to discover the consequences of generated spatial envelopes that are manipulated through digital morphogenesis and related to specific human activity, in the pursuit of possibilities for a digitally generated architecture that is socially engaged. This is not random form finding, wherein architecture tries to imitate biological processes or form, but form finding that is connected to a primary architectural concern, how is the architecture being used by humans.
keywords Social digital morphogenesis, event based, motion capture
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ascaad2010_117
id ascaad2010_117
authors El Gewely, Maha H.
year 2010
title Algorithm Aided Architectural Design (Aaad)
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 117-126
summary Algorithm Aided Architectural Design (AAAD) is considered a second paradigm shift in the Architectural design process after the first one of bridging the conventional design process to the digital realm of design. This paper is divided into two parts, the first part comprehends the Algorithmic Architecture approach of from the point of view of tools, techniques, theories and practice in order to find the Algotecture theories on the map of Digital Architecture. Then, the paper exemplifies an application on Algorithmic Architecture. FALLINGWATER TOOLBOX VERSION 1.0 is a computational design demo tool for architects to aid in the house schematic design phase according to an analytical study of Frank Lloyd Wright's basic design rules and spatial program of his masterpiece; FallingWater House, (Edgar J. Kaufmann family house 1939). These rules have been transferred to algorithms and code thereafter. At a preceding stage, the Graphical User Interface (GUI) was developed using MAXScript 9.0. Using the FALLINGWATER TOOLBOX, infinite number of house prototypes can be generated within few minutes. Although, the FWT is based on a hypothetical design problem of producing prototype alternatives for a new house with the same identity of the Edgar Kaufmann House, the concept of the tool can be applied on a wider range of problems. It may help generating prototype alternative solutions for residential compounds design according to the required constraints.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia10_379
id acadia10_379
authors Geiger, Jordan; San Fratello, Virginia
year 2010
title Hyperculture: Earth as Interface
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 379-384
doi https://doi.org/10.52842/conf.acadia.2010.379
summary Digital Fabrication and Hybrid Interface: Lessons in Agriculture :abstract Two vitally important fields of work in architecture and computing—in digital fabrication methods and in the development of interfaces between digital and analog systems—can find new forms in their combination with one another. Moreover, a recent such experiment in the production of landscape rather than building not only suggests a number of implications for architectural work, but of ecological, economic and urban structures that underlie the projects’s visible formal and aesthetic orders. This project, “Hyperculture: Earth as Interface,” studied the potential outcomes of modifying a commonly employed information infrastructure for the optimization of agricultural production throughout most of America’s heartland; and that same infrastructure’s latent flexibility to operate in both “read” and “write” modes, as a means for collaborative input and diversified, shared output. In the context of industrialized agriculture, this work not only negotiates seemingly contradictory demands with diametrically opposed ecological and social outcomes; but also shows the fabrication of landscape as suggestive of other, more architectural applications in the built environment. The Hyperculture project is sited within several contexts: industrial, geographically local, ecological, and within the digital protocols of landscape processing known as “precision agriculture.” Today, these typically work together toward the surprising result of unvariegated repetition, known commonly as monoculture. After decades of monoculture’s proliferation, its numerous inefficiencies have come under broad recent scrutiny, leading to diverse thinking on ways to redress seemingly conflicting demands such as industry’s reliance on mass-production and automation; the demand for variety or customization in consumer markets; and even regulatory inquiries into the ecological and zoning harms brought by undiversified land use. Monoculture, in short, is proving unsustainable from economic, environmental, and even aesthetic and zoning standpoints. But its handling in digital interfaces, remote sensing and algorithmically directed fabrication is not.
keywords GPS, precision agriculture, digital landscape fabrication, interface, analog/digital systems, open source platform, digital fabrication, multi-dimensional scales
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2017_042
id ecaade2017_042
authors Hitchings, Katie, Patel, Yusef and McPherson, Peter
year 2017
title Analogue Automation - The Gateway Pavilion for Headland Sculpture on the Gulf
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
doi https://doi.org/10.52842/conf.ecaade.2017.2.347
summary The Waiheke Gateway Pavilion, designed by Stevens Lawson Architects originally for the 2010 New Zealand Venice Biennale Pavilion, was brought to fruition for the 2017 Headland Sculpture on the Gulf Sculpture trail by students from Unitec Institute of Technology. The cross disciplinary team comprised of students from architecture and construction disciplines working in conjunction with a team of industry professionals including architects, engineers, construction managers, project managers, and lecturers to bring the designed structure, an irregular spiral shape, to completion. The structure is made up of 261 unique glulam beams, to be digitally cut using computer numerical control (CNC) process. However, due to a malfunction with the institutions in-house CNC machine, an alternative hand-cut workflow approach had to be pursued requiring integration of both digital and analogue construction methods. The digitally encoded data was extracted and transferred into shop drawings and assembly diagrams for the fabrication and construction stages of design. Accessibility to the original 3D modelling software was always needed during the construction stages to provide clarity to the copious amounts of information that was transferred into print paper form. Although this design to fabrication project was challenging, the outcome was received as a triumph amongst the architecture community.
keywords Digital fabrication; workflow; rapid prototyping; representation; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id ascaad2010_179
id ascaad2010_179
authors Jones, Charles; Kevin Sweet
year 2010
title Over Constrained
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 179-188
summary Parametric software has fundamentally changed the way in which architecture is conceptualized, developed and even constructed. The ability to assign parameters or numeric variables to specific portions of a project has allowed designers the potential to test variations of their design. Small changes to a single parameter can have an exponential effect on the designed object and alter its appearance beyond original preconceptions in both positive and negative ways. Parametric software also has the ability to constrain or restrict geometry to set values, parameters or conditions. This has the benefit of allowing portions of a form to remain constant or unchanged while simultaneously allowing for a great degree of flexibility in response to a design intent. Constraining portions of a design allows architects to respond to existing or unalterable conditions by ""locking down"" information within a project and then explore those portions that can change more freely. This programmed relationship between the parameter and the form, once established, can give the illusion of minimal effort for maximum output. The ease in which geometrical form can be altered and shaped by a single variable can mislead beginning designers into thinking that the software makes these relationships for them. What is hidden, is the programming or connections needed between the parameters and the geometry in order to produce such dramatic change. Finally, thinking parametrically about design reintroduces the concept of a rigorous, intent driven, fabrication oriented practice; a practice lost in a digital era where the novelty of new tools was sufficient to produce new form. Because parametric models must have established relationships to all parts of the design, each component must have a purpose, be well thought out, and have a direct relationship to a real world object. The introduction of parametric design methodologies into an architectural pedagogy reestablishes architectural praxis in an academic setting. Students are taught to design based on creating relationships to connected components; just as they would do in a professional architectural practice. This paper outlines how Digital Project – a parametric based software – was introduced into an academic setting in an attempt reconnect the ideologies of academia with the practicalities of professional practice. In order to take full advantage of Digital Project as a parameter based software, a project that creates modular, flexible geometries was devised. Produced over one semester, the project set out to find ways of controlling designed geometry through variable parameters that allowed the initial module to be instantiated or replicated into a wall condition: maintaining a unified whole of discrete components. This paper outlines this process, the results and how the outcomes demonstrates the parametric ideologies described above.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_142
id ecaade2010_142
authors Labelle, Guillaume; Nembrini, Julien; Huang, Jeffrey
year 2010
title Geometric Programming Framework: ANAR+: Geometry library for Processing
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.403-410
doi https://doi.org/10.52842/conf.ecaade.2010.403
wos WOS:000340629400043
summary This paper introduces a JAVA based library for parametric modeling through programming. From the recent advent of scripting tools integrated into commercial CAAD software and everyday design practice, the use of programming applied to an architectural design process becomes a necessary field of study. The ANAR+ library is a parametric geometry environment meant to be used as programming interface by designers. Form exploration strategies based on parametric variations depends on the internal logic description, a key role for form generation. In most commercial CAD software, geometric data structures are often predefined objects, thus constraining the form exploration, whereas digital architectural research and teaching are in need for an encompassing tool able to step beyond new software products limitations. We introduce key concepts of the library and show a use of the library within a form finding process driven by irradiance simulation.
keywords Processing; JAVA; Scene graph; Parametric modeling; Geometry
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia10_73
id acadia10_73
authors Mathew, Anijo Punnen
year 2010
title Just in Place Learning: A Novel Framework for Employing Information in “Place” for Urban Learning Environments
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 73-80
doi https://doi.org/10.52842/conf.acadia.2010.073
summary Nineteenth century models of education and learning which dictate that information is passed on from teacher to apprentice :abstract in a closed classroom environment seem archaic to us, especially since so much of our experiences are constructed in the outside world. Advances in ubiquitous and calm computing; social and immersive media; and urban locative technologies now allow for embedding complex information into physical environments and thus open up possibilities for teachers to set up carefully tagged student engagements in the real world—in “places” where real scientific phenomena are happening and technological artifacts can be engaged with. However these models are seldom successful because they are employed without an understanding of changing paradigms of learning. In this paper, we look at several new developments in learning models and use them to develop Just in Place learning, a novel framework which harnesses embodiment, place, and the potential of new locative technologies to augment traditional practice-based learning. Just in Place learning provides new potential for teachers and students to engage with information in “place,” exploit the urban environment as the new classroom, and the built environment as a portal for situated learning.
keywords Urban computing, interactive environments, education, digital media learning
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia10_151
id acadia10_151
authors Menges, Achim
year 2010
title Material Information: Integrating Material Characteristics and Behavior in Computational Design for Performative Wood Construction
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 151-158
doi https://doi.org/10.52842/conf.acadia.2010.151
summary Architecture as a material practice is still predominantly based on design approaches that are characterized by a hierarchical relationship that prioritizes the generation of geometric information for the description of architectural systems and elements over material specific information. Thus, in the early design stage, the material’s innate characteristics and inherent capacities remain largely unconsidered. This is particularly evident in the way wood constructions are designed today. In comparison to most construction materials that are industrially produced and thus relatively homogeneous and isotropic, wood is profoundly different in that it is a naturally grown biological tissue with a highly differentiated material makeup . This paper will present research investigating how the transition from currently predominant modes of representational Computer Aided Design to algorithmic Computational Design allows for a significant change in employing wood’s complex anisotropic behaviour, resulting from its differentiated anatomical structure. In computational design, the relation between procedural formation, driving information, and ensuing form, enables the systematic integration of material information. This materially informed computational design processes will be explained through two research projects and the resultant prototype structures. The first project shows how an information feedback between material properties, system behaviour, the generative computational process, and robotic manufacturing allows for unfolding material-specific gestalt and tapping into the performative potential of wood. The second project focuses on embedding the unique material information and anatomical features of individual wooden elements in a continuous scanning, computational design and digital fabrication process, and thus introduces novel ways of integrating the biological variability and natural irregularities of wood in architectural design.
keywords Computational Design, Digital Fabrication, Material Properties, Behavioural Modelling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2010_052
id caadria2010_052
authors Okuda, S. and Z. Ou
year 2010
title Bio-shell (biodegradable vacuum-formed modularised shelter)
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 565-574
doi https://doi.org/10.52842/conf.caadria.2010.565
summary This paper demonstrates how digitally fabricated vacuum-formed components can provide a new type of efficient construction applicable to architecture. Vacuum forming has the advantage of rapid mass-production capability of 3D curved forms. Recent digital fabrication technologies, such as 3D CAD and CNC machining, have dramatically reduced the cost and time for making the mould. In combination with biodegradable plastic, such as PLA (poly lactic acid) made of biopolymer, it could open up new type of sustainable construction system, which is applicable for temporal disaster housings or exhibition booths.
keywords Digital fabrication; biodegradable; vacuum forming; fi nite element; lightweight structure
series CAADRIA
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_324622 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002