CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 448

_id ecaade2010_215
id ecaade2010_215
authors Barczik, Guenter
year 2010
title Uneasy Coincidence? Massive Urbanization and New Exotic Geometries with Algebraic Geometry as an Extreme Example
doi https://doi.org/10.52842/conf.ecaade.2010.217
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.217-226
summary We investigate the recent coincidence of rapid global urbanization and unprecedented formal freedom in architectural design and ask whether this coincidence is an uneasy one. To study an extreme case of the new exotic geometries made possible through CAAD, we employ algebraic surfaces to experimentally design architecture in an university-based research and experimental design project. Such surfaces exhibit unprecedented complexity and new geometric and topological features yet are highly sound and harmonious. We continue and extend our research presented at the eCAADe 2009 conference in Istanbul.
wos WOS:000340629400023
keywords Algebraic geometry; Shape; Sculpture; design; Tool; Experiment; Methodology; Software
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_266
id ecaade2012_266
authors Casucci, Tommaso ; Erioli, Alessio
year 2012
title Behavioural Surfaces: Project for the Architecture Faculty library in Florence
doi https://doi.org/10.52842/conf.ecaade.2012.1.339
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 339-345
summary Behavioural Surfaces is a thesis project in Architecture discussed on December 2010 at the University of Florence. The project explores the surfacespace relationship in which a surface condition, generated from intensive datascapes derived from environmental data, is able to produce spatial differentiation and modulate structural and environmental preformance. Exploiting material self-organization in sea sponges as surfaces that deploy function and performance through curvature modulation and space defi nition, two different surface definition processes were explored to organize the system hierarchy and its performances at two different scales. At the macroscale, the global shape of the building is shaped on the base of isopotential surfaces while at a more detailed level the multi-performance skin system is defi ned upon the triply periodic minimal surfaces (TPMS).
wos WOS:000330322400034
keywords Digital datascape; Isosurfaces; Material intelligence; Minimal sufaces
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac20108306
id ijac20108306
authors Peters, Brady
year 2010
title Acoustic Performance as a Design Driver: Sound Simulation and Parametric Modeling using SmartGeometry
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 337-358
summary Acoustic performance is an inevitable part of architectural design. Our sonic experience is modified by the geometry and material choices of the designer. Acoustic performance must be understood both on the level of material performance and also at the level of the entire composition. With new parametric and scripting tools performance driven design is possible. Parametric design and scripting tools can be used to explore not only singular objectives, but gradient conditions. Acoustic performance is often thought of in terms of singular performance criteria. This research suggested acoustic design can be understood in terms of gradients and multiple performance parameters. Simulation and modeling techniques for computational acoustic prediction now allow architects to more fully engage with the phenomenon of sound and digital models can be studied to produce data, visualizations, animations, and auralizations of acoustic performance. SmartGeometry has promoted design methods and educational potentials of a performance-driven approach to architectural design through parametric modeling and scripting. The SmartGeometry workshops have provided links between engineering and architecture, analysis and design; they have provided parametric and scripting tools that can provide both a common platform, links between platforms, but importantly an intellectual platform where these ideas can mix. These workshops and conferences have inspired two projects that both used acoustic performance as a design driver. The Smithsonian Institution Courtyard Enclosure and the Manufacturing Parametric Acoustic Surfaces (MPAS) installation at SmartGeometry 2010 are presented as examples of projects that used sound simulation parametric modeling to create acoustically performance driven architecture.
series journal
last changed 2019/05/24 09:55

_id acadia10_234
id acadia10_234
authors de Monchaux, Nicholas; Patwa, Shivang; Golder, Benjamin; Jensen, Sara; Lung, David
year 2010
title Local Code: The Critical Use of Geographic Information Systems in Parametric Urban Design
doi https://doi.org/10.52842/conf.acadia.2010.234
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 234-242
summary Local Code uses geospatial analysis to identify thousands of publicly owned abandoned sites in major US cities, imagining this distributed, vacant landscape as a new urban system. Deploying GIS analysis in conjunction with parametric design software, a landscape proposal for each site is tailored to local conditions, optimizing thermal and hydrological performance to enhance local performance and enhance the whole city’s ecology. Relieving burdens on existing infrastructure, such a digitally mediated, dispersed system provides important opportunities for urban resilience and transformation. In a case study of San Francisco, the projects’ quantifiable effects on energy usage and stormwater remediation would eradicate 88-96% of the need for more expensive, centralized, sewer, and electrical upgrades. As a final, essential layer, the project proposes digital citizen participation to conceive a new, more public infrastructure as well.
keywords GIS, Parametric Design, Emergence, Morphogenesis, Network, Urban Design, Parametric Urbanism
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2010_179
id ecaade2010_179
authors Fotiadou, Angeliki
year 2010
title Computing Towards Responsive Architecture: Energy based simulation software for responsive structures
doi https://doi.org/10.52842/conf.ecaade.2010.507
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.507-513
summary The paper has two targets: a theoretical and a practical one which are totally dependant on each other: Its first purpose is to prove based on detailed comparative study by use of competent software apparatus that rotation in a building abiding by strict rules of adaptation to environmental changes (climate, season, time of day, sun duration etc.) should be viewed by modern architecture as a sine-qua-non in terms of energy consumption economy, environmental resources protection, achievement of high standards of living in the city. The aforementioned benefits will be evidenced by means of comparison of responsive structures to traditional ones. The second and most important purpose is to elaborate and provide the fundamental data and information for the creation of a supporting software for the above described model. The two in interaction will result in “revolution” in modern architecture.
wos WOS:000340629400055
keywords Simulation software; Responsive architecture; Kinetic; Energy consumption
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2010_048
id caadria2010_048
authors Gu, Ning; Vishal Singh and Xiangyu Wang
year 2010
title Applying augmented reality for data interaction and collaboration in BIM
doi https://doi.org/10.52842/conf.caadria.2010.511
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 511-520
summary Building Information Modelling (BIM) is expected to enable efficient collaboration, improved data integrity, distributed and flexible data sharing, intelligent documentation, and high-quality outcome, through enhanced performance analysis, and expedited multi-disciplinary planning and coordination. Despite these apparent benefits, the collaboration across the architecture, engineering and construction (AEC) disciplines is largely based on the exchange of 2D drawings. This paper reports the findings from a research project that aims at developing measures to enhance BIM-based collaboration in the AEC industry. Based on focus group interviews with industry participants and case studies of BIM applications, visualisation was identified as an interactive platform across the design and non-design disciplines. It is argued that visualisation can enhance the motivation for BIM-based collaboration through integration of advanced visualisation techniques such as virtual reality (VR) and augmented reality (AR). An AR interface for a BIM server is also presented and discussed in the paper. AR can open up potential opportunities for exploring alternatives to data representation, organisation and interaction, supporting seamless collaboration in BIM.
keywords BIM; augmented reality; design collaboration
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2010_55
id sigradi2010_55
authors Monteiro, de Menezes Alexandre; Silva Viana Maria de Lourdes; Pereira Junior Mário Lucio; Palhares Sérgio Ricardo
year 2010
title A adequação (ou não) dos aplicativos BIM às teorias contemporâneas de ensino de projeto de edificações [The sufficiency (or not) of BIM apps to contemporary theories of architecture project teaching]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 55-57
summary Two Brazilian academic laboratories at UFMG explored processes for conceptual creation and development of digital guidebooks about architectural drafting design and practice of environmental accessibility for all. It is expected that students may achieve high critical and creative perspectives about knowledge construction in real life contexts by using digital interactive multimedia. This software package allows users to learn freely, at their own pace or location at any time, in a sequence of instruction units. In order to improve students’ autonomy in acquiring learning skills, a new, interdisciplinary, culture seems to push the curriculum beyond conventional techniques.
keywords architectural drafting; digital interactive instruction; environmental accessibility; multimedia
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia10_320
id acadia10_320
authors Rajus, Vinu Subashini; Woodbury, Robert; Erhan, Halil I.; Riecke, Bernhard E.; Mueller, Volker
year 2010
title Collaboration in Parametric Design: Analyzing User Interaction during Information Sharing
doi https://doi.org/10.52842/conf.acadia.2010.320
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 320-326
summary Designers work in groups. They need to share information either synchronously or asynchronously as they work with parametric modeling software, as with all computer-aided design tools. Receiving information from collaborators while working may intrude on their work and thought processes. Little research exists on how the reception of design updates influences designers in their work. Nor do we know much about designer preferences for collaboration. In this paper, we examine how sharing and receiving design updates affects designers’ performances and preferences. We present a system prototype to share changes on demand or in continuous mode while performing design tasks. A pilot study measuring the preferences of nine pairs of designers for different combinations of control modes and design tasks shows statistically significant differences between the task types and control modes. The types of tasks affect the preferences of users to the types of control modes. In an apparent contradiction, user preference of control modes contradicts task performance time.
keywords Parametric Design, Collaboration, Human Interaction
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
doi https://doi.org/10.52842/conf.acadia.2010.327
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia10_103
id acadia10_103
authors Flöry, Simon; Pottmann, Helmut
year 2010
title Ruled Surfaces for Rationalization and Design in Architecture
doi https://doi.org/10.52842/conf.acadia.2010.103
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 103-109
summary In this work, we address the challenges in the realization of free-form architecture and complex shapes in general with the technical advantages of ruled surfaces. We propose a geometry processing framework to approximate (rationalize) a given shape by one or multiple strips of ruled surfaces. We discuss techniques to achieve an overall smooth surface and develop a parametric model for the generation of curvature continuous surfaces composed of ruled surface strips. We illustrate the usability of the proposed process at hand of several projects, where the pipeline has been applied to compute NC data for mould production and to rationalize large parts of free-form facades.
keywords geometry processing; architectural geometry; ruled surface; strip model; surface fitting
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2010_055
id ecaade2010_055
authors Peters, Brady; Olesen, Tobias S.
year 2010
title Integrating Sound Scattering Measurements in the Design of Complex Architectural Surfaces: Informing a parametric design strategy with acoustic measurements from rapid prototype scale models
doi https://doi.org/10.52842/conf.ecaade.2010.481
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.481-491
summary Digital tools present the opportunity for incorporating performance analysis into the architectural design process. Acoustic performance is an important criterion for architectural design. There is much known about sound absorption but little about sound scattering, even though scattering is recognized to be one of the most important factors in predicting the acoustic performance of architectural spaces. This paper proposes a workflow for the design of complex architectural surfaces and the prediction of their sound scattering properties. This workflow includes the development of computational design tools, geometry generation, fabrication of test surfaces, measurement of acoustic performance, the incorporation of this data into the generative tool. The Hexagon Wall is included and discussed as an illustrative design study.
wos WOS:000340629400052
keywords Architectural acoustics; Parametric design; Rapid prototyping
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia10_196
id acadia10_196
authors Tenu, Vlad
year 2010
title Minimal Surfaces as Self-organizing Systems
doi https://doi.org/10.52842/conf.acadia.2010.196
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 196-202
summary Minimal surfaces have been gradually translated from mathematics to architectural design research due to their fascinating geometric and spatial properties. Tensile structures are just an example of their application in architecture known since the early 1960s. The present research relates to the problem of generating minimal surface geometries computationally using self-organizing particle spring systems and optimizing them for digital fabrication. The algorithm is iterative and it has a different approach than a standard computational method, such as dynamic relaxation, because it does not start with a pre-defined topology and it consists of simultaneous processes that control the geometry’s tessellation. The method is tested on triply periodic minimal surfaces and focused on several fabrication techniques such as a tensegrity modular system composed of interlocked rings (Figure 1).
keywords Minimal Surfaces
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2010_040
id ecaade2010_040
authors Akdag, Suzan Girginkaya; Cagdas, Gulen; Guney, Caner
year 2010
title Analyzing the Changes of Bosphorus Silhouette
doi https://doi.org/10.52842/conf.ecaade.2010.815
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.815-823
summary Due to improving technology and global competition today sky is the only limit for high towers of metropolitan areas. The increase in number of high rise has been ruining the silhouette of cities all over the world like Istanbul, whose identity and image have also been destroyed by skyscrapers dominating the seven slopes on which it was once built. The urbanization in Istanbul has somehow become homogenous and destructive over the topography. Despite of raising debates on the critical issue now and then, no analytical approach has ever been introduced. The research therefore, aims to analyze the change of Bosphorus silhouette caused by the emergence of high rise blocks in Zincirlikuyu-Maslak route since it was defined as a Central Business District and a high rise development area by Bosphorus Conservation Law in 1991. ArcGIS Desktop software and its analyst extensions are used for mapping, analyzing and evaluating the urban development within years. The application is considered to be the initial step for a decision support system which will assist in assigning ground for high rise buildings in Istanbul.
wos WOS:000340629400087
keywords GIS; Bosphorus; Silhouette analysis; High rise buildings
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia10_313
id acadia10_313
authors Banda, Pablo
year 2010
title Parametric Propagation of Acoustical Absorbers
doi https://doi.org/10.52842/conf.acadia.2010.313
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 313-319
summary The following paper deals with a performance-driven morphogenetic design task to improve the conditions of room acoustics, using as a case study the material laboratory of the School of Architecture at Federico Santa Maria University of Technology. Combining contemporary Parametric Modeling techniques and a Performance- Based approach, an automatic generative system was produced. This system generated a modular acoustic ceiling based on Helmholtz Resonators. To satisfy sound absorption requirements, acoustic knowledge was embedded within the system. It iterates through a series of design sub-tasks from Acoustic Simulation to Digital Fabrication, searching for a suitable design solution. The internal algorithmic complexity of the design process has been explored through this case study. Although it is focused on an acoustic component, the proposed design methodology can influence other experiences in Parametric Design.
keywords Parametric Modeling, Sound Absorption & Acoustic Knowledge, Performance-Based Design, Design Task, Scripting, Digital Fabrication, Custom Tools, Honeycomb.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia10_263
id acadia10_263
authors Beaman, Michael Leighton; Bader, Stefan
year 2010
title Responsive Shading | Intelligent Façade Systems
doi https://doi.org/10.52842/conf.acadia.2010.263
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 263-270
summary As issues of sustainability gain traction for architects, methodologies for designing, analyzing, and calibrating design solutions have emerged as essential areas of research and development. A number of approaches have been pursued with regard to embedding data into the design process, most fall into one of two approaches to research. The first approach is to mediate environmental impact at the level of applied technology; the second alters building methods and material construction, generating efficient energy use. However, few approaches deal with the crafting of relationships between information and performance on an architectural level. We will examine an approach focused on understanding how crafting relationships between information and design can move architecture towards achieving sustainability. In developing this approach, we created a data-driven design methodology spanning from design inception to construction. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. By contextualizing the solutions generated, we were able design though a set of specific and controlled responses rather than as a singular solution. Information utilization requires a new kind of craft that moves beyond instances into relationships and offers performance sensitive issues in design a focused trajectory. We applied this method to the research and development of a responsive shading structure built in conjunction with a thermal testing lab for two test locations – Austin, Texas (Figure. 1 and 2) and Munich, Germany. The following paper chronicles the design and construction at the Texas site over an academic semester.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia10_357
id acadia10_357
authors Brell-Cokcan, Sigrid; Braumann, Johannes
year 2010
title A New Parametric Design Tool for Robot Milling
doi https://doi.org/10.52842/conf.acadia.2010.357
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 357-363
summary This paper proposes the use of parametric design software, which is generally used for real-time analysis and evaluation of architectural design variants, to create a new production immanent design tool for robot milling. Robotic constraints are integrated in the data flow of the parametric model for calculating, visualizing and simulating robot milling toolpaths. As a result of the design process, a physical model together with a milling robot control data file is generated.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_451136 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002