CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 451

_id caadria2021_110
id caadria2021_110
authors Bao, Ding Wen, Yan, Xin, Snooks, Roland and Xie, Yi Min
year 2021
title SwarmBESO: Multi-agent and evolutionary computational design based on the principles of structural performance
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 241-250
doi https://doi.org/10.52842/conf.caadria.2021.1.241
summary This paper posits a design approach that integrates multi-agent generative algorithms and structural topology optimisation to design intricate, structurally efficient forms. The research proposes a connection between two dichotomous principles: architectural complexity and structural efficiency. Both multi-agent algorithms and Bi-directional evolutionary structural optimisation (BESO) (Huang and Xie 2010), are emerging techniques that have significant potential in the design of form and structure.This research proposes a structural behaviour feedback loop through encoding BESO structural rules within the logic of multi-agent algorithms. This hybridisation of topology optimisation and swarm intelligence, described here as SwarmBESO, is demonstrated through two simple structural models. The paper concludes by speculating on the potential of this approach for the design of intricate, complex structures and their potential realisation through additive manufacturing.
keywords Swarm Intelligence; Multi-agent; BESO (bi-directional evolutionary structural optimisation); Intricate Architectural Form; Efficient Structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia10_379
id acadia10_379
authors Geiger, Jordan; San Fratello, Virginia
year 2010
title Hyperculture: Earth as Interface
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 379-384
doi https://doi.org/10.52842/conf.acadia.2010.379
summary Digital Fabrication and Hybrid Interface: Lessons in Agriculture :abstract Two vitally important fields of work in architecture and computing—in digital fabrication methods and in the development of interfaces between digital and analog systems—can find new forms in their combination with one another. Moreover, a recent such experiment in the production of landscape rather than building not only suggests a number of implications for architectural work, but of ecological, economic and urban structures that underlie the projects’s visible formal and aesthetic orders. This project, “Hyperculture: Earth as Interface,” studied the potential outcomes of modifying a commonly employed information infrastructure for the optimization of agricultural production throughout most of America’s heartland; and that same infrastructure’s latent flexibility to operate in both “read” and “write” modes, as a means for collaborative input and diversified, shared output. In the context of industrialized agriculture, this work not only negotiates seemingly contradictory demands with diametrically opposed ecological and social outcomes; but also shows the fabrication of landscape as suggestive of other, more architectural applications in the built environment. The Hyperculture project is sited within several contexts: industrial, geographically local, ecological, and within the digital protocols of landscape processing known as “precision agriculture.” Today, these typically work together toward the surprising result of unvariegated repetition, known commonly as monoculture. After decades of monoculture’s proliferation, its numerous inefficiencies have come under broad recent scrutiny, leading to diverse thinking on ways to redress seemingly conflicting demands such as industry’s reliance on mass-production and automation; the demand for variety or customization in consumer markets; and even regulatory inquiries into the ecological and zoning harms brought by undiversified land use. Monoculture, in short, is proving unsustainable from economic, environmental, and even aesthetic and zoning standpoints. But its handling in digital interfaces, remote sensing and algorithmically directed fabrication is not.
keywords GPS, precision agriculture, digital landscape fabrication, interface, analog/digital systems, open source platform, digital fabrication, multi-dimensional scales
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id lasg_hylozoicground_2010_96
id lasg_hylozoicground_2010_96
authors William Elsworthy
year 2010
title Component Design and Actuated Devices; An Evolutionary Process
source Hylozoic Ground; Liminal Responsive Architecture [ISBN 978-1-926724-02-7] Riverside Architectural Press: Toronto, Canada 2010. pp. 96 - 111
summary Introductory summary of developing Hylozoic Series, a collection of life-like architectural structures
keywords Hylozoism, Hylozoic series, components, assemblies, design process
email
last changed 2019/07/29 14:00

_id lasg_hylozoicground_2010_86
id lasg_hylozoicground_2010_86
authors Christian Joakim
year 2010
title Topology and Geometry; The Hylozoic Mesh
source Hylozoic Ground; Liminal Responsive Architecture [ISBN 978-1-926724-02-7] Riverside Architectural Press: Toronto, Canada 2010. pp. 86 - 95
summary Introductory summary of developing Hylozoic Series, a collection of life-like architectural structures
keywords Hylozoism, Hylozoic series, topology, geometries
last changed 2019/07/29 14:00

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
doi https://doi.org/10.52842/conf.ecaade.2012.2.495
wos WOS:000330320600052
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia10_196
id acadia10_196
authors Tenu, Vlad
year 2010
title Minimal Surfaces as Self-organizing Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 196-202
doi https://doi.org/10.52842/conf.acadia.2010.196
summary Minimal surfaces have been gradually translated from mathematics to architectural design research due to their fascinating geometric and spatial properties. Tensile structures are just an example of their application in architecture known since the early 1960s. The present research relates to the problem of generating minimal surface geometries computationally using self-organizing particle spring systems and optimizing them for digital fabrication. The algorithm is iterative and it has a different approach than a standard computational method, such as dynamic relaxation, because it does not start with a pre-defined topology and it consists of simultaneous processes that control the geometry’s tessellation. The method is tested on triply periodic minimal surfaces and focused on several fabrication techniques such as a tensegrity modular system composed of interlocked rings (Figure 1).
keywords Minimal Surfaces
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20108102
id ijac20108102
authors Budroni, Angela; Jan Boehm
year 2010
title Automated 3D Reconstruction of Interiors from Point Clouds
source International Journal of Architectural Computing vol. 8 - no. 1, 55-73
summary We present a new technique for the fully automated 3D modelling of indoor environments from a point cloud. The point cloud is acquired with several scans and is afterwards processed in order to segment planar structures, which have a noticeable architectural meaning (floor, ceiling and walls) in the interior. The basic approach to data segmentation is plane sweeping based on a hypothesis-and-test strategy. From the segmentation results, the ground plan is created through cell decomposition by trimming the two-dimensional ground space using half-space primitives. An extension in height of the ground contours makes the generation of the 3D model possible. The so-reconstructed indoor model is saved in CAD format for analysis and further applications or, simply, as a record of the interior geometry.
series journal
last changed 2019/05/24 09:55

_id sigradi2010_201
id sigradi2010_201
authors Chiarella, Mauro; Tosello María Elena
year 2010
title Laboratorio de Representación e Ideación (RI.Lab10) [Representation and Ideation Lab (RI.Lab10)]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 201-204
summary The Laboratory of Representation and Ideation (RI.Lab10) operates under the assumption that the different representations used in architecture create, modify and/or confirm different interpretation methods and mechanisms of perception, along with the information they produce. Architectonic representation allows us to understand and assess relationships between the tools used in a project and their resulting architectonic forms, which are placed within the context of social structures and cultural paradigms where they are developed. The main objective of such didactic experiences is to adapt available technological resources—in a strategic and integrative fashion—to expand the resources and capacities of the complex systems that intervene in the act of projecting architecture.
keywords representation, ideation, disruption
series SIGRADI
email
last changed 2016/03/10 09:48

_id acadia10_372
id acadia10_372
authors Dierichs, Karola; Menges, Achim
year 2010
title Material Computation in Architectural Aggregate Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 372-378
doi https://doi.org/10.52842/conf.acadia.2010.372
summary Aggregates are defined as large amounts of elements being in loose contact. In architecture they are mainly known as an additive in concrete construction. Relatively few examples use aggregates in their unbound form as an architectural material system in their own right. The investigation of potential architectural applications however is both a very relevant and unexplored branch of design research. Loose granular systems are inherently different from other architectural construction systems. One of the most decisive distinctions lies in the way information on those granular architectural systems is being generated, processed, and integrated into the design process. Several mathematical methods have been developed to numerically model granular behaviour. However, the need and also the potential of using so-called ,material’ computation is specifically relevant with aggregates, as much of their behaviour is still not being described in these mathematical models. This paper will present the current outcome of a doctorate research on aggregate architectures with a focus on information processing in machine and material computation. In the first part, it will introduce definitions of material and machine computation. In the second part, the way machine computation is employed in modelling granulates will be introduced. The third part will review material computation in granular systems. In the last part, a concrete example of an architectural aggregate model will be explained with regard to the given definition of material computation. Conclusively a comparative overview between material and machine computation in aggregate architectures will be given and further areas of development will be outlined.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ascaad2010_127
id ascaad2010_127
authors Hubers, Hans
year 2010
title Collaborative Parametric BIM
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 127-134
summary The paper will be focussing on a number of digital design tools used in [our groups credentials]. A new laboratory called […] is developed with Virtual Reality for collaborative architectural design. A brief description of the systems and how they are used to support a design team is given. Synchronic and a-synchronic, local and inter-local communication is made possible. Methods for introducing sustainability in the digital design process and user participation over the Internet will be discussed. The results of the author’s PhD research “Collaborative architectural design in virtual reality” are used to develop a new approach in which team members use their own specific software. Swarm design applications developed in Virtools are used at the start of a project. The objects in the swarm can be urban and architectural functional volumes. Examples of the first are houses, offices, factories, roads and water ways. Examples of the second are working, dining, shopping and waiting spaces. Relations between the functional volumes with or without constraints make the functional volumes swarm to find equilibrium. Everything is dynamic, meaning that relations and functional volumes can change any time. Alternatives can be developed using different values for these parameters and by top-down intervention. When the final global layout has been chosen, using a criteria matrix with sustainability criteria to be judged by all participants, including the future users, a next phase is started amongst professionals using parametric design software. A study into different types of parametric design software makes clear why object parametric software can be used for IFC based BIM, while the more interesting process parametric software can not. To make this clear a pragmatic description of the IFC format is given with a simple example of such a file. Future research will be proposed in which applications of different disciplines are connected through the application programming interfaces, while integrating as much as possible the building information and knowledge in the IFC format.
series ASCAAD
type normal paper
email
last changed 2011/03/01 07:48

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
doi https://doi.org/10.52842/conf.acadia.2017.512
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2010_100
id ecaade2010_100
authors Stavric, Milena; Hirschberg, Urs; Wiltsche, Albert
year 2010
title Spatializing Planar Ornaments: Towards esthetic control in segmenting and building curved surfaces
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.437-443
doi https://doi.org/10.52842/conf.ecaade.2010.437
wos WOS:000340629400047
summary This paper gives insight into an ongoing funded research project dealing with architectural geometry and nonstandard fabrication methods. The innovative aspect of the project lies in the way it uses geometric ornamentation as a method to control the construction of double curved free-form surfaces out of planar building elements. After a short outline of the state of the art the paper gives an overview of the project’s novel constructive and esthetic approach to the planarization of curved forms, discusses the implications of the approach and presents some preliminary results.
keywords Architectural geometry; Nonstandard structures; Ornament; Mass customization
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia10_340
id acadia10_340
authors Tamke, Martin; Riiber, Jacob; Jungjohann, Hauke
year 2010
title Generated Lamella
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 340-347
doi https://doi.org/10.52842/conf.acadia.2010.340
summary The hierarchical organization of information is dominant in the setup of tectonic structures. In order to overcome the inherent limitations of these systems, self-organization is proposed as a means for future design. The paper exemplifies this within the research project “Lamel la Flock”. The research takes its point of departure in the structural abilities of the wooden Zollinger system: a traditional structural lamella system distributed as a woven pattern of interconnected beams. Where the original system has a very limited set of achievable geometries our research introduces an understanding of beam elements as autonomous entities with sensorymotor behaviour. By this means freeform structures can be achieved Through computation and methods of self-organization, the project investigates how to design and build with a system based on multiple and circular dependencies. Hereby the agent system negotiates between design intent, tectonic needs, and production. The project demonstrates how real-time interactive modeling can be hybridized with agent–based design strategies and how this environment can be linked to physical production. The use of knowledge embedded into the system as well as the flow of information between dynamic processes, Finite Element Calculation and machinery was key for linking the speculative with the physical.
keywords agent based systems, digital fabrication, aware models, wooden structures, industrial collaboration, 1:1 demonstrator
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia10_211
id acadia10_211
authors Crawford, Scott
year 2010
title A Breathing Building Skin
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 211-217
doi https://doi.org/10.52842/conf.acadia.2010.211
summary This paper details an initial exploration into the development of a breathing building skin. This research proposes a system of diaphragms as an alternative to the use of fans for distributing volumes of air. The driving concepts for this project are the three types of evolutionary adaptation: flexibility, acclimation, and learning. Of particular interest is how these biological concepts relate to architectural design. Parametric modeling was used throughout the project to study a family of folding geometry. This allowed for the iterative development of a complex part that is capable of being manufactured from a single sheet of material. Preliminary calculations point to this system being several times more energy efficient than a fan at moving a given volume of air per Watt of electricity. This research is significant as it puts forth a potentially energy efficient and highly integrated alternative to fans, while also illustrating a way of relating biological concepts of adaptation to architectural design.
keywords adaptation, responsive, kinetic, ventilation, space frame, parametric
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2010_027
id caadria2010_027
authors Fernando, Ruwan; Robin Drogemuller, Flora Dilys Salim and Jane Burry
year 2010
title Patterns, heuristics for architectural design support: making use of evolutionary modelling in design
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 283-292
doi https://doi.org/10.52842/conf.caadria.2010.283
summary Software used by architectural and industrial designers has shifted from becoming a tool for drafting, towards use in verification, simulation, project management and remote project sharing. In more advanced models, design parameters for the designed object can be adjusted so that a family of variations can be produced rapidly. With the advances in computer aided design (CAD) technology, design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to leverage specialised design knowledge from various discipline domains (known as expert knowledge systems) as well as to support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques in order to monitor a designer’s cognition and intent based on their design history. This will lead to results that impact future work on design support systems which are capable of supporting implicit constraint and problem definition for wicked problems that are difficult to quantify.
keywords Design support; heuristics; generative modelling; parametric modelling; evolutionary computation
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2010_002
id caadria2010_002
authors Lee, Ji-Hyun; Hyoung-June Park, Sungwoo Lim, Sun-Joong Kim, Haelee Jung and Mark Whiting
year 2010
title A formal approach for the interpretation of cultural content(s): evolution of a Korean traditional pattern, Bosangwhamun
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 19-28
doi https://doi.org/10.52842/conf.caadria.2010.019
summary This paper develops a formal approach to investigate the evolution of a Korean traditional pattern, Bosangwhamun. The approach employs the structure of symbolic memes embedded in the pattern as a framework of hierarchical decomposition of a pattern to describe an evolutionary development process of a given pattern with a set of rules in shape grammar as style changes. Further, the formal descriptions of the given pattern become the basis for generating its variations. With this process, the validity of the rules and their appropriateness in the representation of Bosangwhamun are examined.
keywords Culture; memes; shape grammar; hierarchical decomposition; Korean traditional patterns
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:51

_id ijac20108407
id ijac20108407
authors Pasold, Anke; Isak Worre Foged
year 2010
title Function Follows Performance in Evolutionary Computational Processing-Vertical Evolution
source International Journal of Architectural Computing vol. 8 - no. 4, p. 525
summary As the title ‘Function Follows Performance in Evolutionary Computational Processing’ suggests, this paper explores the potentials of employing multiple design and evaluation criteria within one processing model in order to account for a number of performative parameters desired within varied architectural projects. At the core lies the formulation of a methodology that is based upon the idea of human and computational selection in accordance with pre-defined performance criteria that can be adapted to different requirements by the mere change of parameter input in order to reach location specific design solutions.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_188035 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002