CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 161

_id ascaad2010_241
id ascaad2010_241
authors Aboreeda, Faten; Dina Taha
year 2010
title Using Case-Based Reasoning to Aid Sustainable Design
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 241-246
summary Since so far there exists only one planet, sustainable design is considered the (ethical) future in all fields of design. Although both architecture and construction are being considered major emitters of green house gases, a wise design not only can lead to minimizing this impact but it can also lead to restoring and regenerating the environment to a sustainable state. This paper presents an on-going research that aims at simplifying the elements and facilitating the process of sustainable design by using case-based reasoning. This is achieved through learning from past experiences; both good and bad ones, by providing a database application with a process-friendly interface which divides the main pillars of sustainable design into categories. Each building contains different stories related to different sustainable related issues. Each story can be repeated in /linked to many buildings. By providing designers with those past experiences, it is believed that deeper-studied designs can be more easily developed. Also a deeper analysis and understanding can be further implemented and produced with less effort for experienced and non-experienced architects in sustainable design. This would also decrease the consumption of time during the design process and encourage even more designers to integrate the sustainability concept into more designs. This research discusses the influence of sustainable design within the architectural domain, and suggests a computer application that aids architects during the preliminary design processes.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_079
id ecaade2010_079
authors Wissen Hayek, Ulrike; Neuenschwander, Noemi; Halatsch, Jan; Gre_t-Regamey, Adrienne
year 2010
title Procedural Modeling of Urban Green Space Pattern Designs Taking into Account Ecological Parameters
doi https://doi.org/10.52842/conf.ecaade.2010.339
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.339-347
summary Cities all over the world are challenged by increasing the quality of life of urban citizens in order to ensure sustainable urban development. However, a lot of policies and planning fail in integrating environmental aspects in a way that makes them applicable for design leading to rather unsustainable developments. This paper presents an approach to integrate ecological parameters into urban design using a procedural, shape grammar driven modeling and visualization system. Design specifications and ecological goals given in the Masterplan of MASDAR City derived as an application example for the workflow. We used the concept of ecosystem services to break down the ecological process knowledge to design rules and meaningful, quantifiable spatial indicators. Our results demonstrate the application of the proposed approach covering different planning scales (district and building level). The integrated model suits as an assessment tool that can be used to test urban design alternatives on the ecological functioning as a starting point for architects.
wos WOS:000340629400036
keywords City modeling; Shape grammar; Ecological indicators; Urban ecosystem services; Sustainable urban patterns
series eCAADe
email
last changed 2022/06/07 07:57

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2010_048
id caadria2010_048
authors Gu, Ning; Vishal Singh and Xiangyu Wang
year 2010
title Applying augmented reality for data interaction and collaboration in BIM
doi https://doi.org/10.52842/conf.caadria.2010.511
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 511-520
summary Building Information Modelling (BIM) is expected to enable efficient collaboration, improved data integrity, distributed and flexible data sharing, intelligent documentation, and high-quality outcome, through enhanced performance analysis, and expedited multi-disciplinary planning and coordination. Despite these apparent benefits, the collaboration across the architecture, engineering and construction (AEC) disciplines is largely based on the exchange of 2D drawings. This paper reports the findings from a research project that aims at developing measures to enhance BIM-based collaboration in the AEC industry. Based on focus group interviews with industry participants and case studies of BIM applications, visualisation was identified as an interactive platform across the design and non-design disciplines. It is argued that visualisation can enhance the motivation for BIM-based collaboration through integration of advanced visualisation techniques such as virtual reality (VR) and augmented reality (AR). An AR interface for a BIM server is also presented and discussed in the paper. AR can open up potential opportunities for exploring alternatives to data representation, organisation and interaction, supporting seamless collaboration in BIM.
keywords BIM; augmented reality; design collaboration
series CAADRIA
email
last changed 2022/06/07 07:51

_id ascaad2010_109
id ascaad2010_109
authors Hamadah, Qutaibah
year 2010
title A Computational Medium for the Conceptual Design of Mix-Use Projects
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 109-116
summary Mix use development is receiving wide attention for its unique sustainable benefits. Nevertheless, the planning and designing of successful mixed use projects in today's environment is a complex matrix of skill sets and necessary collaborations between various stakeholders and design professionals. From a design point of view, architects are required to manage and coordinate large information sets, which are many time at odds with one another. The expansive space of knowledge and information is at its best vague and substantially ill-structured. A situation that continues to overburden architects mental and intellectual ability to understand, address and communicate the design issue. In the face of this complex condition, designers are gravitating towards information modeling to manage and organize the expansive data. However, is becoming increasingly evident that current building information modeling applications are less suited for early design activity due to their interrupted and rigid workflows. Against this background, this paper presents a theoretical framework for a computational medium to support the designer during early phases of exploring and investigating design alternatives for mix-use projects. The focus is on the conjecture between programming and conceptual design phase; when uncertainty and ambiguity as at its maximum, and the absence of computational support continues to be the norm. It must be noted however, the aim of the medium is not to formulate or automate design answers. Rather, to support designers by augmenting and enhancing their ability to interpret, understand, and communicate the diverse and multi-faceted design issue. In literature on interpretation, Hans-Georg Gadamer explains that understanding is contingent on an act of construction. To understand something is to construct it. In light of this explanation. To help designers understand the design issue, is to help them construct it. To this end, the computational medium discussed in this paper is conceived to model (construct) the mix-use architectural program. In effect, turning it into a dynamic and interactive information model in the form of a graph (network). This is an important development because it will enable an entirely new level of interaction between the designer and the design-problem. It will allow the designer to gather, view, query and repurpose the information in novel ways. It will offer the designer a new context to foster knowledge and understanding about the ill-structured and vague design issue. Additionally, the medium would serve well to communicate and share knowledge between the various stakeholders and design professionals. Central to the discussion are two questions: First, how can architects model the design program using a graph? Second, what is the nature of the proposed computational medium; namely, its components and defining properties?
series ASCAAD
email
last changed 2011/03/01 07:36

_id sigradi2010_286
id sigradi2010_286
authors Kang, Julian
year 2010
title BIM Class Project for Learning by Doing
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 286-289
summary Due to the lack of trained individuals in the construction industry and to its potential impact on construction planning, Building Information Modeling (BIM) has been one of the popular topics taught in academic institutions in the U.S. in recent years. Although it is necessary to master multiple BIM applications in order to fully employ BIM in construction, teaching college students all of these applications in one semester is challenging. This paper presents an industry - sponsored class project developed to help students learn the principles of BIM in a short time. It also presents the opportunities and challenges you may encounter in implementing this class project.
keywords BIM, Construction Management
series SIGRADI
last changed 2016/03/10 09:53

_id ijac20108101
id ijac20108101
authors Phan, Viet Toan; Seung Yeon Choo
year 2010
title Augmented Reality-Based Education and Fire Protection for Traditional Korean Buildings
source International Journal of Architectural Computing vol. 8 - no. 1, 75-91
summary This study examines an application of Augmented Reality technology (AR) for Korean Cultural Traditional Buildings, specifically, the Namdaemun Gate, "National Treasure No 1" of the Republic of Korea. Unfortunately, in February 2008, the Namdaemun Gate burned down, despite the efforts of many firemen, as the main difficulty was getting the fire under control without any structural knowledge of the wooden building. Hence, with the great advances in digital technology, an application of virtual technical information to traditional buildings is needed, and the new technology of AR offers many such advantages for digital architectural design and construction fields. While AR is already being considered as new design approach for architecture, outdoor AR is another practical application that can take advantage of new wearable computer equipment (Head-mounted display also know as HMD, position and orientation sensors, and mobile computing) to superimpose virtual graphics of traditional buildings (in this case, Namdaemun Gate) in a real outdoor scene. Plus, outdoor AR also allows the user to move freely around and inside a 3D virtual construction, thereby offering important training opportunities, for example, specific structural information in the case of firemen and mission planning in the case of a real-life emergency. In this example, the proposed outdoor AR system is expected to provide important educational information on traditional wooden building for architects, archaeologists, and engineers, while also assisting firemen to protect such special buildings.
series journal
last changed 2019/05/24 09:55

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id sigradi2010_412
id sigradi2010_412
authors Weston, Mark
year 2010
title Memory Mesh: Conformationally Adaptive Solar Shading
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 412-414
summary Innovative technologies that enable more efficient use of energy in the built environment contribute to the effectiveness of green building design, and to sustainable building practices. Digital fabrication can be used to unlock the inherent physical properties of common materials as a means to create solar shades which change shape in response to ambient conditions and user needs in a system which relies on extremely simple mechanical actuation. These conformationally adaptive solar shades take advantage of materials which can be deformed not only to occlude or permit the passage of light, but also to produce optimal angles for the maximization the interception of solar radiation of the surface of the device itself.
keywords solar shading, materiality, sustainability, biomimicry, anisotropy
series SIGRADI
email
last changed 2016/03/10 10:03

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2010_029
id caadria2010_029
authors Baerlecken, Daniel; Martin Manegold, Judith Reitz and Arne Kuenstler
year 2010
title Integrative parametric form-finding processes
doi https://doi.org/10.52842/conf.caadria.2010.303
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 303-312
summary The recent developments in digital technologies and contemporary design tools are initiating new approaches of form-finding based on parametric development of multiple geometries with simultaneous consideration of various aspects. This paper focuses on the use of advanced parametric CAD systems and reformulated construction logics to enhance the potential and possibilities of form finding processes. This approach is exemplified through the “Greenhouse Trauttmansdorff project”. The project demonstrates a form finding approach which is based on defined parameters that not only fulfil aesthetic and functional aspects, but simultaneously take structural properties and the resulting sun shading behaviour into account. We will explore within this paper how – next to the functional and contextual building requirements – required illumination levels inside the greenhouse create a feedback loop between the structural system and its cladding system.
keywords parametric representations; digital technologies; digital fabrication; variable systems; load bearing construction
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia10_263
id acadia10_263
authors Beaman, Michael Leighton; Bader, Stefan
year 2010
title Responsive Shading | Intelligent Façade Systems
doi https://doi.org/10.52842/conf.acadia.2010.263
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 263-270
summary As issues of sustainability gain traction for architects, methodologies for designing, analyzing, and calibrating design solutions have emerged as essential areas of research and development. A number of approaches have been pursued with regard to embedding data into the design process, most fall into one of two approaches to research. The first approach is to mediate environmental impact at the level of applied technology; the second alters building methods and material construction, generating efficient energy use. However, few approaches deal with the crafting of relationships between information and performance on an architectural level. We will examine an approach focused on understanding how crafting relationships between information and design can move architecture towards achieving sustainability. In developing this approach, we created a data-driven design methodology spanning from design inception to construction. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. By contextualizing the solutions generated, we were able design though a set of specific and controlled responses rather than as a singular solution. Information utilization requires a new kind of craft that moves beyond instances into relationships and offers performance sensitive issues in design a focused trajectory. We applied this method to the research and development of a responsive shading structure built in conjunction with a thermal testing lab for two test locations – Austin, Texas (Figure. 1 and 2) and Munich, Germany. The following paper chronicles the design and construction at the Texas site over an academic semester.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2017_078
id sigradi2017_078
authors Brandão, Filipe; Ricardo Correia, Alexandra Paio
year 2017
title Rhythms of Renewal of the City
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.534-540
summary In the last few years, building renovation has gained an unprecedented relevance in Portugal, yet it is an asymmetric and urban phenomenon for the study of which, in space and in time, traditional statistic tools have limitations. Using computational tools, it is possible to generate maps that correlate building permits georeferenced data and their processing time. Using Lisbon City Hall database of planning applications and georeferenced vector information, two approaches are developed to represent the internal dynamic of renewal of the city between 2010 and 2016. These maps can be useful to improve the accessibility of planning information to citizens.
keywords Urban renewal; Building renovation; Lisbon; Time; Representation
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac20108206
id ijac20108206
authors Bravo, Germán; Rafael Villazón, Augusto Trujillo, Mauricio Caviedes
year 2010
title Authoring Tools for KOC - Concepts and Pedagogical Use
source International Journal of Architectural Computing vol. 8 - no. 2, 183-200
summary One of the main problems of teachers aiming to teach the construction techniques used in to build a building is the lack of practical examples to show to their students. In order to be useful, these examples must come from real projects or even better the teachers may take their students to constructions sites, but this latter option is not always available and may be dangerous. To deal with this problem, Los Andes University has committed the construction of a knowledge repository containing information gathered from real projects and semantically described, in order to provide easy access to its content and in the language of people of construction. This project is called KOC, standing for Knowledge Objects of Construction, which uses an ontology to describe semantically the data contained in the repository. Being the pedagogical objective of the project, it is important to provide the teachers with additional tools to generate new knowledge objects, based on existing knowledge objects in the repository. This paper presents three composition tools for KOC: a complex objects composer issued from structured searches, a constructive processes composer and a case study composer, all of them aiming the improvement of learning quality in the technical area of building construction at the architecture and engineering schools. The paper also shows some examples of knowledge objects and how KOC is been used in the courses of the Architecture Department of Los Andes.
series journal
last changed 2019/05/24 09:55

_id ecaade2010_184
id ecaade2010_184
authors Celani, Gabriela; Medrano, Leandro
year 2010
title Schemas and Rules in the Design Process: A Case Study
doi https://doi.org/10.52842/conf.ecaade.2010.305
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.305-312
summary The present paper describes the design process of a new prototypical building for the State University of Campinas, with the use of shape schemata and rules. The use of this construct or method made the design process more intelligible for the students who took part in the project and helped managing the team work. We expect that these rules will also allow the automation of the production of design alternatives and construction drawings for new buildings in the campus.
wos WOS:000340629400032
keywords Design process; Shape grammar; Rules; Schemata; Standard design system
series eCAADe
email
last changed 2022/06/07 07:55

_id 9eef
id 9eef
authors Christenson, Mike
year 2010
title Registering visual permeability in architecture: Isovists and occlusion maps in AutoLISP
source Environment and Planning B: Planning and Design 37(6): 1128–1136
summary In this paper the design and execution of a simple AutoLISP routine for generating a map of plan isovists (in the sense of Benedikt) are discussed. Such a plan field of isovists is a registration of visibility from multiple station points within and around a building. More precisely, the plan field records the cumulative effect, over a spatial matrix, of occluded vision of a distant horizon. Thus, the plan field is termed an occlusion map. An occlusion map registers the effect which an observer's position in space has on their perception of architecture's visual permeability. Occlusion maps are shown here to be an important tool for comparing existing buildings in a historical sense and also as an effective design tool, particularly when an addition to an existing building is being contemplated, as an addition invariably affects the visual permeability of its host.
keywords AutoLISP, visibility, isovist
series journal paper
type normal paper
email
more doi:10.1068/b36076
last changed 2011/04/13 16:58

_id ecaade2010_029
id ecaade2010_029
authors Germen, Murat; Kavlak, Emrah
year 2010
title Future Users, Future Cities: Dweller as Designer
doi https://doi.org/10.52842/conf.ecaade.2010.057
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.57-64
summary As technology advances, users get more detached from the way things work and are produced. Users end up being pure consumers and leave their positions as decision makers behind. Before the architecture and buildings processes were industrialized, most practitioners of the so-called vernacular architecture were in fact the dwellers of what they built and they easily met the specific personal needs since they were in total control. Some “architectural theorists have turned to vernacular construction with the conviction that such buildings and settlements express the interconnectedness between humans and the landscapes they live in.” (Beesley and Bonnemaison 2008). Considering the present day intense building activity, such relationship of dweller and architecture seems not possible excepting a very few examples to later referred to. This paper will instead focus on the possibility of the non-architect users of architectures as decision makers in order to reach designs that meet the requirements of their addressees.
wos WOS:000340629400005
keywords User driven architecture; Architecture without architects; Architecture as interface; Sustainability; User involvement
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2010_166
id ecaade2010_166
authors Geyer, Philipp; Buchholz, Martin
year 2010
title System-Embedded Building Design and Modeling: Parametric systems modeling of buildings and their environment for performance-based and strategic design
doi https://doi.org/10.52842/conf.ecaade.2010.641
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.641-650
summary The paper proposes Parametric Systems Modeling (PSM) as a tool for building and city planning. The outlined method is based on the Systems Modeling Language (SysML) and is intended for design, dimensioning, and optimization of buildings and cities as systems. The approach exceeds the geometric approach, considers additional information from physics, technology, as well as biology, and provides a basis for multidisciplinary analyses and simulations. Its application aims at the exploration of innovative sustainable design solutions at system level. The proposal of an innovative buildinggreenhouse-city system serves to illustrate the approach. Features of this system are closed water cycles, renewable energy use, thermo-chemical energy storage and transport of energy for heating and cooling purposes on the base of desiccants, as well as recycling of CO2 , accumulation of biomass and related soil improvement.
wos WOS:000340629400069
keywords Parametric systems modeling; Systems design and engineering; Sustainable city system; City-integrated greenhouse
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2010_168
id ecaade2010_168
authors Halatsch, Jan; Caro, Thomas; Moser, Bruno; Schmitt, Gerhard
year 2010
title A Grammar-based Procedural Design Guideline Visualization Diagram for the Development of SVA Masdar
doi https://doi.org/10.52842/conf.ecaade.2010.833
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.833-840
summary Nowadays, a large set of involved planning parties are heavily demanded with the definition of holistic in kind requirement specifications for urban planning sites – so called future cities. However, the resulting amountof specifications for a specific building project poses a great challenge to designers and planners especially when it comes to include this information into their design proposals for a sustainable urban development. These design performance criteria are traditionally expressed in textual and numerical planning guidelines and which are making it difficult to establish a comprehensive and holistic view onto the domain itself. Therefore we present in this paper a design guide visualization method to overcome this situation for the evaluation of design specification and urban layouts in a qualitative and quantitative manner.
wos WOS:000340629400089
keywords Sustainable urban patterns; Shape grammars; Design evaluation; Urban planning; Design guide translation
series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_684397 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002