CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 452

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
doi https://doi.org/10.52842/conf.acadia.2010.327
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2011_052
id caadria2011_052
authors Al-Kazzaz, Dhuha A. and Alan Bridges
year 2011
title Assessing innovation in hybrid designs using shape grammars
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2011.545
summary Al-kazzaz et al (2010) described hybrid adaption technique to generate innovative designs from heterogeneous precedents using shape grammars. An evaluation of the degree of innovation in the hybrid designs gave feedback to grammar users before and after applying a rule. Innovation was assessed using variables derived from the internal structure of the grammar such as: the number of antecedents in the corpus having the same rule; the number of rules in a subclass rule set having the same geometry; etc. However, the validity of the innovation assessment was unclear and the use of the feedback measures was not demonstrated. Accordingly, this study aims to verify the credibility of the innovation measures and to identify the independent variables that a user can control to achieve a significant impact on each innovation measure as a dependent variable.
keywords Shape grammars; hybrid design; innovation assessment
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2010_286
id sigradi2010_286
authors Kang, Julian
year 2010
title BIM Class Project for Learning by Doing
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 286-289
summary Due to the lack of trained individuals in the construction industry and to its potential impact on construction planning, Building Information Modeling (BIM) has been one of the popular topics taught in academic institutions in the U.S. in recent years. Although it is necessary to master multiple BIM applications in order to fully employ BIM in construction, teaching college students all of these applications in one semester is challenging. This paper presents an industry - sponsored class project developed to help students learn the principles of BIM in a short time. It also presents the opportunities and challenges you may encounter in implementing this class project.
keywords BIM, Construction Management
series SIGRADI
last changed 2016/03/10 09:53

_id sigradi2011_140
id sigradi2011_140
authors Sanchez Cavazos, Maria E.; Sifuentes Solis, Marco A.
year 2011
title Percepción y Manipulación del Espacio en Proyectos Arquitectónicos dentro de una Sociedad Compleja [Perception and Manipulation of the Space in Architectonic Projects within a Complex Society]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 223-226
summary This research consisted on determining, analyzing and evaluating the factors that impact the ability to perceive and manipulate the architectonic space with the use of digital tools for Architectonic Design Workshop students at the U.A.A. The purpose of the research was to validate the model (MUHDyA) (CP+CM) (Sánchez, 2010), which presents a proposal about the use of digital and analogical tools in the acquisition of perceptive and manipulative skills (specific architectonic skill indicated by Tuning Latin America); considering that, the formation by skills is the answer of the architecture schools towards a complex society. Palabras calve
series SIGRADI
email
last changed 2016/03/10 09:59

_id ecaade2010_066
id ecaade2010_066
authors Shin, Dongyoun; Seibert, Thomas; Walz, Steffen P.; Choe, Yoon; Kim, Sung Ah
year 2010
title Energy Monitoring and Visualization System for U-ECO City: Designing a spatial information model for energy monitoring in the context of large amount data management on a web based platform
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.583-591
doi https://doi.org/10.52842/conf.ecaade.2010.583
wos WOS:000340629400063
summary U-Eco City is a research and development project initiated by the Korean government. The project’s objective is the monitoring and visualization of aggregated and real time states of various energy usages represented by location-based sensor data accrued from city to building scale. The platform’s middleware will retrieve geospatial data from a GIS database and sensor data from the individual sensory installed over the city and provide the browserbased client with the accommodated information suitable to display geolocation characteristics specific to the respective energy usage. The client will be capable of processing and displaying real time and aggregated data in different dimensions such as time, location, level of detail, mode of visualization, etc. Ultimately, this system will induce a citizen’s participation with the notion of energy saving, and be utilized as an interactive energy management system from a citizen to authorities responsible for designing or developing city infrastructure. The platform’s middleware has been developed into an operative, advanced prototype, alongside a Web-based client integrates and interfaces with the Google Earth and Google Maps plug-ins for geospatially referenced energy usage visualization and monitoring.
keywords Energy Monitoring; Data visualization; Ueco-City; Spacial information model; UIES
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia22_128
id acadia22_128
authors Azel, Nicolas; Pachuca, Brandon; Wilson, Lucien
year 2022
title Closing the Gap
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 128-137.
summary This paper shares KPF Cloud Tools, a platform for using Rhino Compute (McNeel’s REST API for RhinoCommon and Grasshopper) to run a library of Grasshopper tools through a cloud server via a Rhino plugin with a procedurally generated user interface, making it quick to deploy new tools (Robert McNeel & Associates 2010). We describe the professional challenges that the KPF Cloud Tools platform solves, document the technical implementation of the platform, and illustrate its benefit through the impact on a large architectural practice.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2010_279
id ascaad2010_279
authors Celani, G.; L. Medrano; J. Spinelli
year 2010
title Unicamp 2030: A plan for increasing a university campus in a sustainable way and an example of integrated use of CAAD simulation and computational design strategies
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 279-286
summary The state university of Campinas, Unicamp, is a public university in upstate São Paulo, Brazil, ranked the second best in the country. It was founded in 1966, and its main campus started to be built in 1967, in the suburbs of Campinas, nowadays a two-million people city. The area of the campus is almost 3 million square meters (300 hectares), with a total built area of 522.000 m2 and a population of 40 thousand people - 30 thousand students, 2 thousand faculty members and almost 8 thousand staff members. The campus’ gross population density is 133 people per hectare. Less than 6% of the total campus area is presently occupied. The design of Unicamp's campus is based on concepts that were typical of the modern movement, with reminiscences of corbusian urbanism, in which preference is given to cars and buildings are spread apart on the territory, with little concern to the circulation of pedestrians. The standard building type that has been built on campus since the 1970's is based on non-recyclable materials, and has a poor thermal performance. Unicamp is expected to double its number of students by the year 2030. The campus density is thus expected to grow from 600 people per hectare to almost 1,000 people per hectare. The need to construct new buildings is seen as an opportunity to correct certain characteristics of the campus that are now seen as mistakes, according to sustainability principles. This paper describes a set of proposals targeting the increase of the campus' density in a sustainable way. The plan also aims at increasing the quality of life on campus and diminishing its impact on the environment. The main targets are: - Reducing the average temperature by 2oC; - Reducing the average displacement time by 15 minutes; - Increasing the campus' density by 100%; - Reducing the CO2 emissions by 50%. // In order to achieve these goals, the following actions have been proposed: Developing a new standard building for the university, incorporating sustainability issues, such as the use of renewable and/or recyclable materials, the installation of rainwater storage tanks, the use of natural ventilation for cooling, sitting the buildings in such a way to decrease thermal gain, and other issues that are required for sustainable buildings' international certifications. To assess the performance of the new standard building, different simulation software were used, such as CFD for checking ventilation, light simulation software to assess energy consumption, and so on. 1. Filling up under-utilized urban areas in the campus with new buildings, to make better use of unused infrastructure and decrease the distance between buildings. 2. Proposing new bicycle paths in and outside campus, and proposing changes in the existing bicycle path to improve its safety. 3. Developing a landscape design plan that aims at creating shaded pedestrian and bicycle passageways.
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:37

_id caadria2010_027
id caadria2010_027
authors Fernando, Ruwan; Robin Drogemuller, Flora Dilys Salim and Jane Burry
year 2010
title Patterns, heuristics for architectural design support: making use of evolutionary modelling in design
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 283-292
doi https://doi.org/10.52842/conf.caadria.2010.283
summary Software used by architectural and industrial designers has shifted from becoming a tool for drafting, towards use in verification, simulation, project management and remote project sharing. In more advanced models, design parameters for the designed object can be adjusted so that a family of variations can be produced rapidly. With the advances in computer aided design (CAD) technology, design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to leverage specialised design knowledge from various discipline domains (known as expert knowledge systems) as well as to support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques in order to monitor a designer’s cognition and intent based on their design history. This will lead to results that impact future work on design support systems which are capable of supporting implicit constraint and problem definition for wicked problems that are difficult to quantify.
keywords Design support; heuristics; generative modelling; parametric modelling; evolutionary computation
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2010_62
id sigradi2010_62
authors Monteiro, de Menezes Alexandre; Silva Viana Maria de Lourdes; Pereira Junior Mário Lucio; Palhares Sérgio Ricardo
year 2010
title A eficiência da comunicação gráfica digital na etapa de projeto e seu reflexo na construção de uma edificação [The efficiency of digital graphic communication at the proeject stage and its impact on the construction of a building]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 62-65
summary This research studies digital technology in graphic communication among professionals in building design, and its reflection in construction. There is evidence of difficulties caused by interference among the participants involved in building projects, resulting in rework, construction waste and discontent. The effectiveness of graphic communication among professionals is related to the efficiency of constructions. This research has identified procedures in the establishment of projects that contribute positively, or not, to the quality of graphic communication among professionals. After listing these procedures, the research identified their reflections in construction. The results confirm that it is possible to identify positive and negative consequences of graphic communication procedures among professionals involved in building construction.
keywords graphic digital communication; building project; building construction
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2013_195
id caadria2013_195
authors Park, Jihyun; Azizan Aziz, Kevin Li and Carl Covington
year 2013
title Energy Performance Modeling of an Office Building and Its Evaluation – Post-Occupancy Evaluation and Energy Efficiency of the Building
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 209-218
doi https://doi.org/10.52842/conf.caadria.2013.209
wos WOS:000351496100021
summary Energy performance modelling can provide insights into the efficiency and sustainability of commercial buildings, and also the achievement of certification standards such as USGBC LEED. However, the results from the modelling must be validated via a post-construction evaluation, which quantifies any discrepancies between the predicted energy usage and the actual energy consumed. In this study, an existing office building was examined to test how well the model predicts energy usage. The results from the model were compared with the actual usage of gas and electricity over two years (2010-2011). Our study showed a 123% higher gas usage,and a 36% lower electricity, compared with the simulation. This difference presents that occupant behaviour and building construction practices have significant impact on the energy usage of a building. For instance, the large discrepancy among gas usage is due to the office building’s thermal envelope, which identifies the spots at which heat leaks out of the building, thereby forcing the heating unit to work more. Additionally, the post occupancy evaluation study identified that indoor environmental conditions impact on energy consumption of the building. 
keywords Building performance evaluation, Energy modelling, Energy usage, User behaviour, Post occupancy evaluation
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia20_668
id acadia20_668
authors Pasquero, Claudia; Poletto, Marco
year 2020
title Deep Green
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 668-677.
doi https://doi.org/10.52842/conf.acadia.2020.1.668
summary Ubiquitous computing enables us to decipher the biosphere’s anthropogenic dimension, what we call the Urbansphere (Pasquero and Poletto 2020). This machinic perspective unveils a new postanthropocentric reality, where the impact of artificial systems on the natural biosphere is indeed global, but their agency is no longer entirely human. This paper explores a protocol to design the Urbansphere, or what we may call the urbanization of the nonhuman, titled DeepGreen. With the development of DeepGreen, we are testing the potential to bring the interdependence of digital and biological intelligence to the core of architectural and urban design research. This is achieved by developing a new biocomputational design workflow that enables the pairing of what is algorithmically drawn with what is biologically grown (Pasquero and Poletto 2016). In other words, and more in detail, the paper will illustrate how generative adversarial network (GAN) algorithms (Radford, Metz, and Soumith 2015) can be trained to “behave” like a Physarum polycephalum, a unicellular organism endowed with surprising computational abilities and self-organizing behaviors that have made it popular among scientist and engineers alike (Adamatzky 2010) (Fig. 1). The trained GAN_Physarum is deployed as an urban design technique to test the potential of polycephalum intelligence in solving problems of urban remetabolization and in computing scenarios of urban morphogenesis within a nonhuman conceptual framework.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2010_026
id ecaade2010_026
authors Rafi, Ahmad; Rani, Ruzaimi Mat
year 2010
title Visual Perception and Visualization Tools for Visual Impact Assessment (VIA) on Urban Streetscape
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.575-581
doi https://doi.org/10.52842/conf.ecaade.2010.575
wos WOS:000340629400062
summary Two different surveys were conducted for visual impact assessment (VIA) on urban streetscape namely – the visual perception and visualization tools. The first was focused on the visual perception between designers and nondesigners of the undergraduate students from four different public universities in Malaysia representing landscape architecture and business administration courses whereas the latter concentrated on students with a background of landscape architecture and quantity surveyor to evaluate static and dynamic visualization tools. The paper discussed the findings of the visual perception and visualization tools surveys, and its impact towards improving VIA on urban streetscape.
keywords Visual perception; Visualization tool; Visual impact assessment; Urban streetscape
series eCAADe
email
last changed 2022/06/07 08:00

_id e5a8
id e5a8
authors Saghafi, Mahmoud Reza; Jill Franz, Philip Crowther
year 2010
title Crossing the Cultural Divide: A Contemporary Holistic Framework for Conceptualising Design Studio Education
source CONNECTED 2010 – 2ND INTERNATIONAL CONFERENCE ON DESIGN EDUCATION 28 JUNE - 1 JULY 2010, UNIVERSITY OF NEW SOUTH WALES, SYDNEY, AUSTRALIA
summary While the studio is widely accepted as the learning environment where architecture students most effectively learn how to design (Mahgoub, 2007:195), there are surprisingly few studies that attempt to identify in a qualitative way the interrelated factors that contribute to and support design studio learning (Bose, 2007:131). Such a situation seems problematic given the changes and challenges facing education including design education. Overall, there is growing support for re-examining (perhaps redefining) the design studio particularly in response to the impact of new technologies but as this paper argues this should not occur independently of the other elements and qualities comprising the design studio. In this respect, this paper describes a framework developed for a doctoral project concerned with capturing and more holistically understanding the complexity and potential of the design studio to operate within an increasingly and largely unpredictable global context. Integral to this is a comparative analysis of selected cases underpinned by grounded theory methodology of the traditional design studio and the virtual design studio informed by emerging pedagogical theory and the experiences of those most intimately involved – students and lecturers. In addition to providing a conceptual model for future research, the framework is of value to educators currently interested in developing as well as evaluating learning environments for design.
keywords design studio, learning environment, online education
series other
type normal paper
email
more http://eprints.qut.edu.au/32147/1/c32147.pdf
last changed 2010/11/16 08:26

_id ascaad2010_203
id ascaad2010_203
authors Sidawi, Bhzad
year 2010
title The Sustainable Management of Remote Construction Projects
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 203-212
summary This paper discusses investigates the use of present project management practices and systems by the construction department of the Saudi Electric Company (SEC), Kingdom of Saudi Arabia (KSA). It highlights shortages of the current management practices and systems and how it affects badly the sustainability dimensions of projects such as quality, scope, time and cost. The literature review suggests that Advanced Electronic Management and Communications systems (AEMCS) may help companies in managing remote projects efficiently thus minimizing the travel time, reducing unnecessary project costs and raising the quality of projects. Little research though was done regarding this issue and it found few unique management problems. A field survey was conducted on contractors and SEC’s supervision teams. It revealed that some of the remote project’s management problems however were caused by unprofessional and non standard project management conduct. It also found that traditional systems are very popular whereas advanced electronic systems are of little use. Participants expressed their concerns about the SEC’s present project management practices and their views regarding the implementation of advanced electronic project management systems and its possible impact on projects’ performance and process. The survey’s outcomes indicated that advanced electronic management systems should be tailored to SEC’s present and prospected needs, meanwhile SEC’s present project management methodologies should be adjusted into sustainable management practices. This would guarantee that project management practices will be substantially improved and sustainable objectives of projects are met. The study should motivate the SEC and other companies in KSA to review their present project management practices and systems, investigate the potentiality of advanced electronic systems use in managing remote projects and explore how to embrace sustainability’s dimensions in project management practices.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia10_000
id acadia10_000
authors Sprecher, Aaron; Yeshayahu, Shai and Lorenzo-Eiroa, Pablo (eds.)
year 2010
title ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), 411 p.
doi https://doi.org/10.52842/conf.acadia.2010
summary The ACADIA 2010 conference will focus on the changing nature of information and its impact on architectural education, research and practice. With the ever-increasing integration of information technologies in the design laboratory, the discipline of architecture has changed profoundly in recent years. The emerging fields of digital fabrication, generative and evolutionary modeling among others, are now at the core of investigations in a growing community of digital design practitioners and researchers. ACADIA 2010 will explore the ways designers, architects, engineers and scientists collect, analyze and assemble information through computational systems that redefine the notions of design performance and optimization, evolutionary and responsive models. These notions are today inherently related to the possibilities and limitations offered by our increasing computational capabilities, and the way information shapes relations between the human, the environment, and the machine. ACADIA 2010 will gather leading practitioners, theorists, and researchers who will examine the relation that architecture has with technology and information, and how the latter propels today’s most innovative design experimentations and research. The conference will be centered on a series of peer-reviewed paper sessions and a groundbreaking exhibition including peer-reviewed projects.
series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2010_047
id caadria2010_047
authors Tai, Nan-Ching and Mehlika Inanici
year 2010
title Lighting in real and pictorial spaces: a computational framework to investigate the scene-based lighting distributions and their impact on depth perception
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 501-510
doi https://doi.org/10.52842/conf.caadria.2010.501
summary Architects often use two-dimensional media to represent, visualise, and study the three-dimensional qualities of un-built spaces. Knowledge of pictorial cues is a powerful design tool that can be used to enhance the spatial qualities of built environments. This paper draws from the recent developments in computer graphics (physically based renderings and perceptually based tone mapping techniques) and demonstrates the utilisation of a computational framework to generate pictorial spaces that can mimic perceptual reality. Computer simulation and psychophysical research methodologies are employed to examine the relationship between the lighting patterns introduced by architectural configurations and their impacts on depth perception. The research demonstrates that physically and perceptually based renderings can be used to study depth perception; and luminance contrast in an architectural scene is an effective pictorial cue that increases the perceived spatial depth.
keywords Depth perception; pictorial cue; lighting simulation; physically based rendering; high dynamic range imagery
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_345338 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002