CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 451

_id ascaad2010_189
id ascaad2010_189
authors Allahaim, Fahad; Anas Alfaris and David Leifer
year 2010
title Towards Changeability
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 189-200
summary Many buildings around the world have undergone successive changes over their life cycles. Regardless of the type or size of a building there are usually requirements for change due to several unanticipated forces and emerging uncertainties that act upon them. These changes might be in the building’s spatial, structural or service systems. This can be due to changes in the needs of occupants, the market demand or technological advances. Although buildings undergo change, current design practice does not address this and buildings are still designed as if they will remain static. This paper proposes an Adaptable Buildings Design (ABD) Framework to address the issue of adaptability in building design. Using this methodology uncertainties and future changes are first identified. To increase the building’s longevity, flexibility options are embedded and design rules are formulated to trigger these options when necessary. The value of adaptability is then assessed by implementing several simulations using Real Options Analysis (ROA). To demonstrate the approach, the ABD is applied to a multi-use commercial building case study. Flexibility is embedded in the building’s design across several systems allowing it to change and evolve over time based on a set of design rules. The buildings adaptability is then assessed using ROA. Positive results demonstrate the strength of the proposed methodology in addressing future change and uncertaintie.
series ASCAAD
email
last changed 2011/03/01 07:36

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2010_279
id ascaad2010_279
authors Celani, G.; L. Medrano; J. Spinelli
year 2010
title Unicamp 2030: A plan for increasing a university campus in a sustainable way and an example of integrated use of CAAD simulation and computational design strategies
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 279-286
summary The state university of Campinas, Unicamp, is a public university in upstate São Paulo, Brazil, ranked the second best in the country. It was founded in 1966, and its main campus started to be built in 1967, in the suburbs of Campinas, nowadays a two-million people city. The area of the campus is almost 3 million square meters (300 hectares), with a total built area of 522.000 m2 and a population of 40 thousand people - 30 thousand students, 2 thousand faculty members and almost 8 thousand staff members. The campus’ gross population density is 133 people per hectare. Less than 6% of the total campus area is presently occupied. The design of Unicamp's campus is based on concepts that were typical of the modern movement, with reminiscences of corbusian urbanism, in which preference is given to cars and buildings are spread apart on the territory, with little concern to the circulation of pedestrians. The standard building type that has been built on campus since the 1970's is based on non-recyclable materials, and has a poor thermal performance. Unicamp is expected to double its number of students by the year 2030. The campus density is thus expected to grow from 600 people per hectare to almost 1,000 people per hectare. The need to construct new buildings is seen as an opportunity to correct certain characteristics of the campus that are now seen as mistakes, according to sustainability principles. This paper describes a set of proposals targeting the increase of the campus' density in a sustainable way. The plan also aims at increasing the quality of life on campus and diminishing its impact on the environment. The main targets are: - Reducing the average temperature by 2oC; - Reducing the average displacement time by 15 minutes; - Increasing the campus' density by 100%; - Reducing the CO2 emissions by 50%. // In order to achieve these goals, the following actions have been proposed: Developing a new standard building for the university, incorporating sustainability issues, such as the use of renewable and/or recyclable materials, the installation of rainwater storage tanks, the use of natural ventilation for cooling, sitting the buildings in such a way to decrease thermal gain, and other issues that are required for sustainable buildings' international certifications. To assess the performance of the new standard building, different simulation software were used, such as CFD for checking ventilation, light simulation software to assess energy consumption, and so on. 1. Filling up under-utilized urban areas in the campus with new buildings, to make better use of unused infrastructure and decrease the distance between buildings. 2. Proposing new bicycle paths in and outside campus, and proposing changes in the existing bicycle path to improve its safety. 3. Developing a landscape design plan that aims at creating shaded pedestrian and bicycle passageways.
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:37

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
doi https://doi.org/10.52842/conf.acadia.2010.327
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2010_030
id caadria2010_030
authors Toth, Bianca; Robin Drogemuller and John Frazer
year 2010
title Information dependencies between architects and services engineers for early design evaluation: a framework for an energy design tool for architects
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 313-222
doi https://doi.org/10.52842/conf.caadria.2010.313
summary Effective strategies for the design of efficient and environmentally sensitive buildings require a close collaboration between architects and engineers in the design of the building shell and environmental control systems at the outset of projects. However, it is often not practical for engineers to be involved early on in the design process. It is therefore essential that architects be able to perform preliminary energy analyses to evaluate their proposed designs prior to the major building characteristics becoming fixed. Subsequently, a need exists for a simplified energy design tool for architects. This paper discusses the limitations of existing analysis software in supporting early design explorations and proposes a framework for the development of a tool that provides decision support by permitting architects to quickly assess the performance of design alternatives.
keywords Performance-based design; energy simulation; decision support; design process; information dependencies
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2010_148
id ecaade2010_148
authors Joyce, Sam; Tabak, Vincent; Sharma, Shrikant; Williams, Chris
year 2010
title Applied Multi-Scale Design and Optimization for People Flow
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.633-639
doi https://doi.org/10.52842/conf.ecaade.2010.633
wos WOS:000340629400068
summary This paper presents an overview of the current developments in people flow analysis in Buro Happold’s analytical group SMART Solutions. The role of people flow analysis has become an established one, within many leading consultancy firms with their own specialist groups supporting the architects and planners in the design of buildings and urban spaces. This paper proposes that the key development in the progression of this work is a due to a change in emphasis, away from a passive analysis task where its key role is to validate assumptions of flow and alleviate areas of high concern to using the process as a design instigator/driver. The new paradigm emerging, involves calculating people flow at the conceptual stage of a project in collaboration with the respective architectural firm, and using this information as a primary design input. This paper describes and analyses the two objectives set out by Buro Happold’s SMART group in order to improve the process of design; firstly to make it more prominent in the design environment and secondly to see if it has the potential to work as a design driver. These objectives create a design methodology defined by people flow and suggest value in innovating and conceiving of robust simple methods of improving designs.
keywords People flow; Pedestrian flow; Multi-objective optimization; Masterplanning; Network analysis
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia10_263
id acadia10_263
authors Beaman, Michael Leighton; Bader, Stefan
year 2010
title Responsive Shading | Intelligent Façade Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 263-270
doi https://doi.org/10.52842/conf.acadia.2010.263
summary As issues of sustainability gain traction for architects, methodologies for designing, analyzing, and calibrating design solutions have emerged as essential areas of research and development. A number of approaches have been pursued with regard to embedding data into the design process, most fall into one of two approaches to research. The first approach is to mediate environmental impact at the level of applied technology; the second alters building methods and material construction, generating efficient energy use. However, few approaches deal with the crafting of relationships between information and performance on an architectural level. We will examine an approach focused on understanding how crafting relationships between information and design can move architecture towards achieving sustainability. In developing this approach, we created a data-driven design methodology spanning from design inception to construction. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. By contextualizing the solutions generated, we were able design though a set of specific and controlled responses rather than as a singular solution. Information utilization requires a new kind of craft that moves beyond instances into relationships and offers performance sensitive issues in design a focused trajectory. We applied this method to the research and development of a responsive shading structure built in conjunction with a thermal testing lab for two test locations – Austin, Texas (Figure. 1 and 2) and Munich, Germany. The following paper chronicles the design and construction at the Texas site over an academic semester.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia10_145
id acadia10_145
authors Briscoe, Danelle
year 2010
title Information Controlled Erosion
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 145-150
doi https://doi.org/10.52842/conf.acadia.2010.145
summary This paper documents research of a design process that interrelates a single information model to 5-axis, waterjet cutting technology. With the intention of creating an optimized design, data is streamed through a building information model that controls geometry parametrically by a component/system relationship. At the scale of a 4’x8’ panel, material properties and pattern variability act as underlying initiators of design rather than post-rational information. In a manner uncommon to the discipline, the information model is being used as a generative tool, rather than as one for mere documentation. The research assigns a limestone wall type to the panel—a material predominantly used in areas where it is indigenous and typically desirable for its texture, color, and thermal properties. The intention is to develop potentialities through material specificity in the information model’s conceptualization. The water-jet process is then used to erode the limestone to achieve varying fields of scalar voids. In addition, the thickness of wall cladding attenuates for figuration and interest. The final stone panels transition from a rain screen system to a solar screen that modulates light, thereby linking environmental intentions to current technological capabilities. The information model is exported for analysis of daylight and structural dynamic qualities and quantities as part of the workflow. Parameters within the information model database facilitate a dimensionally controlled iterative process. Moreover, fabricating with building materials via the information model expedites a design and makes possible for materiality to move beyond merely conceptual representation.
keywords digital fabrication, information model
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia10_218
id acadia10_218
authors Chok, Kermin; Donofrio, Mark
year 2010
title Structure at the Velocity of Architecture
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 218-226
doi https://doi.org/10.52842/conf.acadia.2010.218
summary This paper outlines a digital design workflow, utilized by the authors, which actively links the geometry platforms being utilized by architects with tools for structural analysis, design, form-finding, and optimization. This workflow leads to an accelerated generation and transfer of information to help guide and inform the design process. The engineering team is thus empowered to augment the architect’s design by ensuring that the design team is conscious of the structural implications of design decisions throughout the design process. A crucial element of this design process has been the dynamic linkage of parametric geometry models with structural analysis and design tools. This reduces random errors in model generation and allows more time for critical analysis evaluation. However, the ability to run a multitude of options in a compressed time frame has led to ever increasing data sets. A key component of this structural engineering workflow has become the visualization and rigorous interpretation of the data generated by the analysis process. The authors have explored visualization techniques to distill the complex analysis results into graphics that are easily discernable by all members of the design team.
keywords Workflows, Structure, Collaboration, Visualizations, Analysis
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia10_211
id acadia10_211
authors Crawford, Scott
year 2010
title A Breathing Building Skin
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 211-217
doi https://doi.org/10.52842/conf.acadia.2010.211
summary This paper details an initial exploration into the development of a breathing building skin. This research proposes a system of diaphragms as an alternative to the use of fans for distributing volumes of air. The driving concepts for this project are the three types of evolutionary adaptation: flexibility, acclimation, and learning. Of particular interest is how these biological concepts relate to architectural design. Parametric modeling was used throughout the project to study a family of folding geometry. This allowed for the iterative development of a complex part that is capable of being manufactured from a single sheet of material. Preliminary calculations point to this system being several times more energy efficient than a fan at moving a given volume of air per Watt of electricity. This research is significant as it puts forth a potentially energy efficient and highly integrated alternative to fans, while also illustrating a way of relating biological concepts of adaptation to architectural design.
keywords adaptation, responsive, kinetic, ventilation, space frame, parametric
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia10_234
id acadia10_234
authors de Monchaux, Nicholas; Patwa, Shivang; Golder, Benjamin; Jensen, Sara; Lung, David
year 2010
title Local Code: The Critical Use of Geographic Information Systems in Parametric Urban Design
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 234-242
doi https://doi.org/10.52842/conf.acadia.2010.234
summary Local Code uses geospatial analysis to identify thousands of publicly owned abandoned sites in major US cities, imagining this distributed, vacant landscape as a new urban system. Deploying GIS analysis in conjunction with parametric design software, a landscape proposal for each site is tailored to local conditions, optimizing thermal and hydrological performance to enhance local performance and enhance the whole city’s ecology. Relieving burdens on existing infrastructure, such a digitally mediated, dispersed system provides important opportunities for urban resilience and transformation. In a case study of San Francisco, the projects’ quantifiable effects on energy usage and stormwater remediation would eradicate 88-96% of the need for more expensive, centralized, sewer, and electrical upgrades. As a final, essential layer, the project proposes digital citizen participation to conceive a new, more public infrastructure as well.
keywords GIS, Parametric Design, Emergence, Morphogenesis, Network, Urban Design, Parametric Urbanism
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia10_372
id acadia10_372
authors Dierichs, Karola; Menges, Achim
year 2010
title Material Computation in Architectural Aggregate Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 372-378
doi https://doi.org/10.52842/conf.acadia.2010.372
summary Aggregates are defined as large amounts of elements being in loose contact. In architecture they are mainly known as an additive in concrete construction. Relatively few examples use aggregates in their unbound form as an architectural material system in their own right. The investigation of potential architectural applications however is both a very relevant and unexplored branch of design research. Loose granular systems are inherently different from other architectural construction systems. One of the most decisive distinctions lies in the way information on those granular architectural systems is being generated, processed, and integrated into the design process. Several mathematical methods have been developed to numerically model granular behaviour. However, the need and also the potential of using so-called ,material’ computation is specifically relevant with aggregates, as much of their behaviour is still not being described in these mathematical models. This paper will present the current outcome of a doctorate research on aggregate architectures with a focus on information processing in machine and material computation. In the first part, it will introduce definitions of material and machine computation. In the second part, the way machine computation is employed in modelling granulates will be introduced. The third part will review material computation in granular systems. In the last part, a concrete example of an architectural aggregate model will be explained with regard to the given definition of material computation. Conclusively a comparative overview between material and machine computation in aggregate architectures will be given and further areas of development will be outlined.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia10_203
id acadia10_203
authors Jaskiewicz, Tomasz
year 2010
title (In:)forming Interactive Architectural Systems, Case of the xMAiA Meta-model
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 203-210
doi https://doi.org/10.52842/conf.acadia.2010.203
summary This paper positions the domain of interactive architecture (iA) and searches for an appropriate model for structure and processing of information in the design and operation of such architecture. It is shown that there are different approaches to ways in which iA system models can be defined, each with numerous advantages and disadvantages. However, due to complexity of encountered problems, application of such models can be only partially validated by simulation and hence their design is inherently dependent on creation of operational and experiential full-scale prototypes of the systems these models represent. Another observation is the lack of correspondence between existing iA models and other contemporary models of computation for architectural geometry, fabrication and engineering. A meta-model for extensible multi-agent interactive architecture (xMAiA) is consequently proposed as a remedy to this situation. xMAiA meta-model is aimed to provide an open framework for integrated evolution, development and operation of interactive architectural systems. It delivers an extensible platform, in which diverse, project-specific models and approaches can be implemented, tested, and further evolved. Such a platform has the potential to empower agile development and operation of interactive architectural ecologies, as well as to substantially facilitate integration of creative design and experiential prototyping from day-1 of project design and development cycle. An example application conforming to the xMAiA meta-model is consequently presented and illustrated with a case study project performed in the university education context.
keywords multi agent systems, interactive architecture, responsive architecture, design tools
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia10_139
id acadia10_139
authors Miller, Nathan
year 2010
title [make]SHIFT: Information Exchange and Collaborative Design Workflows
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 139-144
doi https://doi.org/10.52842/conf.acadia.2010.139
summary This paper explores design processes requiring the invention and implementation of customized workflows for the optimization of design information exchange. Standard workflows in design software are typically dependent upon the use of proprietary file formats to communicate design intent across the design team. Software platforms promote “one-stop-shop” proprietary approaches to BIM where all team members and consultants ideally operate within a single model environment and store information within a single file format. While the ‘single model’ approach can be effective under some circumstances, this approach is often found to be limiting when the design process calls for the integration of other design toolsets and delivery processes. This is especially true for large complex projects where multiple participants with different software requirements need to collaborate on the same design. In these cases, various non-standard ways of working are often implemented, resulting in a new means of communicating design and building information across a team. This paper will outline the impact customized workflows have on the design process at NBBJ and evaluate their potential for leading to more innovative design and integrated teams. The first study will explore and evaluate the communication and collaborative process that took place in the design development and construction documentation stages of the Hangzhou Stadium. The second study will be an overview of ongoing investigation and experimentation into customized workflows for team and data integration.
keywords team integration, international practice, parametric methods
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2010_040
id caadria2010_040
authors Neisch, P.
year 2010
title Thai children’s participation in development of 3D virtual village
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 423-431
doi https://doi.org/10.52842/conf.caadria.2010.423
summary This paper present the process of virtual world’s adaptation to the vision of the real environment designed by the children of two primary Thai schools – a state school and a private school. The main point of the present paper is presentation of empirical research that is an analysis of four exercises – inquiries in which I asked children to draw the elements of their city and social life. The first task was to represent a route from home to school. Next, children were asked to draw the plan of their school, on which they had to differentiate the places dedicated to them, the common spaces and the spaces for another people. The last exercise done at school was related to the description of their family and their closest friends. At the end, the children were asked to draw an inside of their houses with the maximum of details. The results of representations of the daily life environments analysed and synthesised were rebuilt with the graphic computer tools. They will serve as the base of the conception of a 3D virtual village dedicated to the Thai children.
keywords Virtual / real; children; inquiry; drawing; pedagogic platform
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac20108101
id ijac20108101
authors Phan, Viet Toan; Seung Yeon Choo
year 2010
title Augmented Reality-Based Education and Fire Protection for Traditional Korean Buildings
source International Journal of Architectural Computing vol. 8 - no. 1, 75-91
summary This study examines an application of Augmented Reality technology (AR) for Korean Cultural Traditional Buildings, specifically, the Namdaemun Gate, "National Treasure No 1" of the Republic of Korea. Unfortunately, in February 2008, the Namdaemun Gate burned down, despite the efforts of many firemen, as the main difficulty was getting the fire under control without any structural knowledge of the wooden building. Hence, with the great advances in digital technology, an application of virtual technical information to traditional buildings is needed, and the new technology of AR offers many such advantages for digital architectural design and construction fields. While AR is already being considered as new design approach for architecture, outdoor AR is another practical application that can take advantage of new wearable computer equipment (Head-mounted display also know as HMD, position and orientation sensors, and mobile computing) to superimpose virtual graphics of traditional buildings (in this case, Namdaemun Gate) in a real outdoor scene. Plus, outdoor AR also allows the user to move freely around and inside a 3D virtual construction, thereby offering important training opportunities, for example, specific structural information in the case of firemen and mission planning in the case of a real-life emergency. In this example, the proposed outdoor AR system is expected to provide important educational information on traditional wooden building for architects, archaeologists, and engineers, while also assisting firemen to protect such special buildings.
series journal
last changed 2019/05/24 09:55

_id ecaade2010_003
id ecaade2010_003
authors Sampaio, Alcinia Zita; Ferreira, Miguel M.; Rosario, Daniel P.
year 2010
title Integration of VR technology in Buildings Management: The lighting system
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.729-737
doi https://doi.org/10.52842/conf.ecaade.2010.729
wos WOS:000340629400078
summary The first component of a building implemented in a virtual prototype concerning the management of a building is a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in 3D and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.
keywords Interactive visualization model; Virtual reality; Building maintenance; Lighting system
series eCAADe
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2010_018
id caadria2010_018
authors Schoch, M.; A. Praditsmanont and C. Prakasvudhisarn
year 2010
title Shaping building volumes through life cycle costs: a constraint programming approach for building volume optimisation
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 185-194
doi https://doi.org/10.52842/conf.caadria.2010.185
summary Due to a general freedom in the architectural design process, a wide range of possible alternatives exist; although building-volume designs must also continue to meet numerous, possibly conflicting design requirements originating from various related disciplines. This research addresses problems associated with missing quantitative design aids during the early design stages. It aims to provide designers with solutions that provide optimal cost-effectiveness. The demonstrated building-volume optimisation model minimises life cycle costs by determining optimal-volume dimensions, floor number, building orientation and ‘window / wall’ opening ratios while satisfying site and building code regulations and design constraints. Results indicate an optimal solution can be found within a practical timeframe. The proposed, novel approach to introduce cost objectives into building-volume design provides designers with a valuable decision support tool in a design domain that is known to be complex owing to multiple design criteria and constraint influences.
keywords Decision support; design optimisation; building volume design; life cycle costs and constraint-based design
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2010_069
id ecaade2010_069
authors Schoch, Martin; Praditsmanont, Apichat
year 2010
title Experimenting with Building Footprint Formation and Volume Optimization: A constraint programming approach for the optimization of buildingvolumes based on combinatorial rectangular footprint formations
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.419-427
doi https://doi.org/10.52842/conf.ecaade.2010.419
wos WOS:000340629400045
summary This paper is focusing on integrating footprint formations of buildingvolumes into an existing research of building-volume optimization (BVO). While earlier BVO experiments concentrated on single rectangular floor-area units per floor, the current BVO model allows footprint assemblies of combinatorial rectangular floor-area units per floor. The aspect of using these combinatorial floor assemblies is to provide more flexibility into the shaping of possible building-volumes and thus a more realistic approach to building-volume design. The investigation regarding combinatorial floor-area units concentrated on running time in reference to amount of allowable unit combinations per floor and the ability to provide close to optimal solutions through additional search runs. Results of the experiments documented a sharp increase of running time due to the additional allocation of floor-area units, while the BVO model was improved through the ability to generate combinatory footprint formation and offer close to optimal solutions.
keywords Decision support; Design optimization; Building-volume design; Life cycle costs; Constraint-based design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2010_130
id ecaade2010_130
authors Sdegno, Alberto
year 2010
title Digital Simulation of the City for Three Millions Inhabitants by Le Corbusier: Geometrical analysis, electronic reconstruction and video animation
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.549-556
doi https://doi.org/10.52842/conf.ecaade.2010.549
wos WOS:000340629400059
summary The research that is presented describes the geometrical analysis and the digital reconstruction of one of the most important designs by Le Corbusier: the City of Three Millions Inhabitants; it represents one of the most impressive solutions of the idea of Future City done during the XX Century, and a lot of its architectural elements are now part of contemporary buildings. The aim of the research was to understand the main morphological aspects of it and compare the different solutions made by the author during his life, starting from the first public presentation in occasion of the Salon d’Automne in Paris (1922) and to reconstruct the 3D digital realistic-textured model of it, in order to realize the video that describes the whole project of the city; the research was done at the Faculty of Architecture of the IUAV University of Venice.
keywords Le Corbusier; Urban design; Digital reconstruction; Simulation; Video
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_435429 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002