CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 431

_id acadia10_145
id acadia10_145
authors Briscoe, Danelle
year 2010
title Information Controlled Erosion
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 145-150
doi https://doi.org/10.52842/conf.acadia.2010.145
summary This paper documents research of a design process that interrelates a single information model to 5-axis, waterjet cutting technology. With the intention of creating an optimized design, data is streamed through a building information model that controls geometry parametrically by a component/system relationship. At the scale of a 4’x8’ panel, material properties and pattern variability act as underlying initiators of design rather than post-rational information. In a manner uncommon to the discipline, the information model is being used as a generative tool, rather than as one for mere documentation. The research assigns a limestone wall type to the panel—a material predominantly used in areas where it is indigenous and typically desirable for its texture, color, and thermal properties. The intention is to develop potentialities through material specificity in the information model’s conceptualization. The water-jet process is then used to erode the limestone to achieve varying fields of scalar voids. In addition, the thickness of wall cladding attenuates for figuration and interest. The final stone panels transition from a rain screen system to a solar screen that modulates light, thereby linking environmental intentions to current technological capabilities. The information model is exported for analysis of daylight and structural dynamic qualities and quantities as part of the workflow. Parameters within the information model database facilitate a dimensionally controlled iterative process. Moreover, fabricating with building materials via the information model expedites a design and makes possible for materiality to move beyond merely conceptual representation.
keywords digital fabrication, information model
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia10_263
id acadia10_263
authors Beaman, Michael Leighton; Bader, Stefan
year 2010
title Responsive Shading | Intelligent Façade Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 263-270
doi https://doi.org/10.52842/conf.acadia.2010.263
summary As issues of sustainability gain traction for architects, methodologies for designing, analyzing, and calibrating design solutions have emerged as essential areas of research and development. A number of approaches have been pursued with regard to embedding data into the design process, most fall into one of two approaches to research. The first approach is to mediate environmental impact at the level of applied technology; the second alters building methods and material construction, generating efficient energy use. However, few approaches deal with the crafting of relationships between information and performance on an architectural level. We will examine an approach focused on understanding how crafting relationships between information and design can move architecture towards achieving sustainability. In developing this approach, we created a data-driven design methodology spanning from design inception to construction. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. By contextualizing the solutions generated, we were able design though a set of specific and controlled responses rather than as a singular solution. Information utilization requires a new kind of craft that moves beyond instances into relationships and offers performance sensitive issues in design a focused trajectory. We applied this method to the research and development of a responsive shading structure built in conjunction with a thermal testing lab for two test locations – Austin, Texas (Figure. 1 and 2) and Munich, Germany. The following paper chronicles the design and construction at the Texas site over an academic semester.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia11_186
id acadia11_186
authors Chaturvedi, Sanhita; Colmenares, Esteban; Mundim, Thiago
year 2011
title Knitectonics
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 186-195
doi https://doi.org/10.52842/conf.acadia.2011.186
summary The project Knitectonics aims at exploring digital fabrication systems that facilitate optimized, adaptive and specific integrated architectural solutions (Male-Alemany 2010). It is inspired by the beauty of nature systems with their inherent efficiency and performance. The research explored on-site fabrication of monocoques shells, integrating skin and structure along with services and infrastructure, using a simple household technique. It thus embodies a self organized micro system of textures and a macro system of structures. This paper elaborates how the numeric aspects of a textile technique were used, first to digitally imitate the process of assembly and further exploited to develop and visualize a novel fabrication system, based on material research and technical experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia10_117
id acadia10_117
authors Crotch, Joanna; Mantho, Robert; Horner, Martyn
year 2010
title Social Spatial Genesis: Activity Centered Space Making
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 117-124
doi https://doi.org/10.52842/conf.acadia.2010.117
summary Digital technologies and processes have been used to generate architectural form for over two decades. Recent advances in digital technologies have allowed virtual digital environments to be constructed from physical movement. But can a bridge that connects the physical and virtual realms be developed? Can this, currently arbitrary form making be grounded in human activity and subsequently be integrated in to real time, space, and place. This research asks how space generated from the process of digital morphogenesis can be related to meaning beyond just the creation of form. Existing research asks how new form can be discovered, or what material and structural possibilities can be derived from form, through these morphological processes. The aim of this research project is to complete the loop, physical–virtual–physical, and to connect these digital processes to meaning through human activity. Its aim is to discover the consequences of generated spatial envelopes that are manipulated through digital morphogenesis and related to specific human activity, in the pursuit of possibilities for a digitally generated architecture that is socially engaged. This is not random form finding, wherein architecture tries to imitate biological processes or form, but form finding that is connected to a primary architectural concern, how is the architecture being used by humans.
keywords Social digital morphogenesis, event based, motion capture
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2018_204
id ecaade2018_204
authors de Oliveira, Maria Jo?o, Moreira Rato, Vasco and Leit?o, Carla
year 2018
title KINE[SIS]TEM'17 - A methodological process for a Nature-Based Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 561-570
doi https://doi.org/10.52842/conf.ecaade.2018.1.561
summary Architecture is the mediator between the Environment and Humans. Nature maximal performance and minimal resources creations are Humanity inspiration that led us to exceed structural, material, mechanisms, tools, systems and methods boundaries (Oxman, 2010).Nature are the Architect of the most reliable and sustainable systems. Looking into Nature's lessons, this paper presents a Nature-based design methodology conducted during Kine[SIS]tem'17 Shading Systems International Summer School, held by the ISCTE-Instituto Universitário de Lisboa, Portugal, between 19th - 30th June 2017. The methodology encompasses two main stages, one before and other during the Summer School. From a pre-definition of context constrains, a nature based design strategy, to a planning of the manufacture and construction still during the phase of development of the design, conducted the Summer School participants through a defined biomimetic process that achieved the construction of 1:1 scale prototype.
keywords Kinesis; Shading; System; Nature-based design
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia10_258
id acadia10_258
authors Doumpioti, Christina; Greenberg, Evan L.; Karatzas, Konstantinos
year 2010
title Embedded Intelligence: Material Responsiveness in Façade Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 258-262
doi https://doi.org/10.52842/conf.acadia.2010.258
summary This paper presents recent research for new mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on insect and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The proposed façade system uses integrated sensors and actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to manufacturing methods and material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli, and ultimately, effective performance of the whole system.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia20_464
id acadia20_464
authors Elberfeld, Nathaniel; Tessmer, Lavender; Waller, Alexandra
year 2020
title A Case for Lace
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 464-473.
doi https://doi.org/10.52842/conf.acadia.2020.1.464
summary Textiles and architecture share a long, intertwined history from the earliest enclosures to contemporary high-tech tensile structures. In the Four Elements of Architecture, Gottfried Semper (2010) posited wickerwork and carpet enclosures to be the essential origins of architectural space. More recently, architectural designers are capitalizing on the characteristics of textiles that are difficult or impossible to reproduce with other material systems: textiles are pliable, scalable, and materially efficient. As industrial knitting machines join robotic systems in architecture schools with fabrication- forward agendas, much of the recent developments in textile-based projects make use of knitting. In this paper, we propose an alternative textile technique, lacemaking, for architectural fabrication. We present a method for translating traditional lacemaking techniques to an architectural scale and explore its relative advantages over other textiles. In particular, we introduce bobbin lace and describe its steps both in traditional production and at an architectural scale. We use the unique properties of bobbin lace to form workflows for fabrication and computational analysis. An example of computational analysis demonstrates the ability to optimize lace-based designs towards particular labor objectives. We discuss opportunities for automation and consider the broader implications of understanding a material system relative to the cost of labor to produce designs using it.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia10_250
id acadia10_250
authors Foged, Isak Worre; Poulsen, Esben Skouboe
year 2010
title Environmental Feedback and Spatial Conditioning
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 250-257
doi https://doi.org/10.52842/conf.acadia.2010.250
summary This paper illustrates responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Environmental Feedback, Hierarchical Systems, Information Processing, Homeostat
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia10_151
id acadia10_151
authors Menges, Achim
year 2010
title Material Information: Integrating Material Characteristics and Behavior in Computational Design for Performative Wood Construction
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 151-158
doi https://doi.org/10.52842/conf.acadia.2010.151
summary Architecture as a material practice is still predominantly based on design approaches that are characterized by a hierarchical relationship that prioritizes the generation of geometric information for the description of architectural systems and elements over material specific information. Thus, in the early design stage, the material’s innate characteristics and inherent capacities remain largely unconsidered. This is particularly evident in the way wood constructions are designed today. In comparison to most construction materials that are industrially produced and thus relatively homogeneous and isotropic, wood is profoundly different in that it is a naturally grown biological tissue with a highly differentiated material makeup . This paper will present research investigating how the transition from currently predominant modes of representational Computer Aided Design to algorithmic Computational Design allows for a significant change in employing wood’s complex anisotropic behaviour, resulting from its differentiated anatomical structure. In computational design, the relation between procedural formation, driving information, and ensuing form, enables the systematic integration of material information. This materially informed computational design processes will be explained through two research projects and the resultant prototype structures. The first project shows how an information feedback between material properties, system behaviour, the generative computational process, and robotic manufacturing allows for unfolding material-specific gestalt and tapping into the performative potential of wood. The second project focuses on embedding the unique material information and anatomical features of individual wooden elements in a continuous scanning, computational design and digital fabrication process, and thus introduces novel ways of integrating the biological variability and natural irregularities of wood in architectural design.
keywords Computational Design, Digital Fabrication, Material Properties, Behavioural Modelling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia10_243
id acadia10_243
authors Pasold, Anke; Foged, Isak Worre
year 2010
title Performative Responsive Architecture Powered by Climate
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 243-249
doi https://doi.org/10.52842/conf.acadia.2010.243
summary This paper is to link the thermonastic behavior found in flower heads in nature with the material research into bimetallic :abstract strips. This is to advance the discussion of environmental responsive systems on the basis of thermal properties for advanced environmental studies within the field of architecture in general and in form of a responsive building skin in particular.
keywords Environmental response, Material properties, Embedded Informaiton flo
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ijac20108306
id ijac20108306
authors Peters, Brady
year 2010
title Acoustic Performance as a Design Driver: Sound Simulation and Parametric Modeling using SmartGeometry
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 337-358
summary Acoustic performance is an inevitable part of architectural design. Our sonic experience is modified by the geometry and material choices of the designer. Acoustic performance must be understood both on the level of material performance and also at the level of the entire composition. With new parametric and scripting tools performance driven design is possible. Parametric design and scripting tools can be used to explore not only singular objectives, but gradient conditions. Acoustic performance is often thought of in terms of singular performance criteria. This research suggested acoustic design can be understood in terms of gradients and multiple performance parameters. Simulation and modeling techniques for computational acoustic prediction now allow architects to more fully engage with the phenomenon of sound and digital models can be studied to produce data, visualizations, animations, and auralizations of acoustic performance. SmartGeometry has promoted design methods and educational potentials of a performance-driven approach to architectural design through parametric modeling and scripting. The SmartGeometry workshops have provided links between engineering and architecture, analysis and design; they have provided parametric and scripting tools that can provide both a common platform, links between platforms, but importantly an intellectual platform where these ideas can mix. These workshops and conferences have inspired two projects that both used acoustic performance as a design driver. The Smithsonian Institution Courtyard Enclosure and the Manufacturing Parametric Acoustic Surfaces (MPAS) installation at SmartGeometry 2010 are presented as examples of projects that used sound simulation parametric modeling to create acoustically performance driven architecture.
series journal
last changed 2019/05/24 09:55

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
doi https://doi.org/10.52842/conf.acadia.2017.512
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia10_174
id acadia10_174
authors Sabin, Jenny E.
year 2010
title Digital Ceramics: Crafts-based Media for Novel Material Expression & Information Mediation at the Architectural Scale
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 174-182
doi https://doi.org/10.52842/conf.acadia.2010.174
summary Design research for digital ceramics commenced with the project, “Ground Substance” an experimental form produced in the Sabin+Jones LabStudio. The design team was led by Jenny E. Sabin and Andrew Lucia. Dr. Peter Lloyd Jones and Agne Taraseviciuete led the scientific team. Our design critic was Annette Fierro. The project was inspired by original biological research conducted at the Jones Laboratory, supervised by Dr. Peter Lloyd Jones and led by MD-PhD student Agne Taraseviciuete at the Institute for Medicine and Engineering, UPenn. This research was supported generously by the CMREF. Design and production of “Ground Substance” was supported generously by a UPenn Research and Development Grant awarded to the Sabin+Jones LabStudio.
series ACADIA
type panel paper
email
last changed 2022/06/07 07:58

_id acadia10_45
id acadia10_45
authors Saggio, Antonino
year 2010
title Information is the Raw Material of a New Architecture
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 45-48
doi https://doi.org/10.52842/conf.acadia.2010.045
summary The brief of this 2010 Acadia conference is Life in Formation: On Responsive Information and Variations in Architecture, and it will discuss “on the influence of computing and its impact on the changing nature of information.” But at this point an interesting question should be answered. What is information? What is its specific significance in the area of information technology? How could information be considered the “raw material” in the most advanced architectural experimentation over the past few years? This essay wants to demonstrate the effectiveness of the affirmation: Information is the Raw material of a New architecture. To further expand the thesis and to access bibliography and notes, see the many books of the “IT revolution in Architecture Book Series” Birkhäuser (Basel, Boston) and EdilStampa (Rome) and the last book of the author “The IT Revolution In Architecture, Thoughts on a Paradigm Shift” Carocci,(Rome) 2007 translated in English in ITool and distributed by Lulu.com.
series ACADIA
type panel paper
email
last changed 2022/06/07 07:56

_id sigradi2010_142
id sigradi2010_142
authors Senagala, Mahesh
year 2010
title Deconstructing Materiality. Harderials, Softerials, Minderials, and the Transformation of Architecture
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 142-145
summary This paper presents a deconstructionist close reading of the conventional discourses about materiality by forwarding a triadic framework of harderials, softerials and minderials. The discourse draws from the Derridan notion of différance in articulating the fundamental difficulty in understanding materiality. Taking the discourse about materiality into the digital realm, a critical discussion of softerials and their implication to architecture are presented. Questions about a possible material - envy and materiality - complex in architectural profession are also raised. Different binary strategies by which softerials are relegated by architects to a secondary status of “media” are exposed.
keywords materiality, philosophy, deconstruction, critique, Second Life
series SIGRADI
last changed 2016/03/10 10:00

_id acadia10_88
id acadia10_88
authors Steinfeld, Kyle; Bhiwapurkar, Pravin; Dyson, Anna; Vollen, Jason
year 2010
title Situated Bioclimatic Information Design: a new approach to the processing and visualization of climate data
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 88-96
doi https://doi.org/10.52842/conf.acadia.2010.088
summary Currently, most approaches to graphic evaluative frameworks (GEFs) for the early-stage evaluation of bioclimatic design strategies adopt a design-tool metaphor, wherein a battery of analytical routines is performed by a software tool based upon a standardized weather file from which a stock set of graphic material is produced. In seeking to evaluate a broad range of climates and to address a wide variety of passive design strategies, existing climate visualization and evaluation tools position themselves far outside of the context of a situated design problem. Remaining agnostic to the particularities of site, program, tectonic system, and material behavior these tools become, by definition, generic. As a consequence, while such design-tools can be effective in evaluating particular relationships between environmental resource, demand profile, and built-system, they maintain a potential to be rendered ineffective in any outlying cases not specifically anticipated by their authors . Situated Bioclimatic Information Design (SBID) presents an alternative approach that targets a class of design strategies prominent among these outlying cases: those highly responsive to negotiation between the continually fluctuating resources within microclimates and the fluctuating demand profile of the building program. Using a custom-built weather data parser a number of diagrams and data visualizations have been produced under this approach. These visualizations are not only useful in and of themselves for aligning design strategies to specific contexts, but they also illustrate the foundations of a larger theoretical framework for the processing and visualization of climatic data for effective utilization of bioclimatic flows.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia10_333
id acadia10_333
authors Blough, Lawrence
year 2010
title Digital Tracery: Fabricating Traits
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 333-339
doi https://doi.org/10.52842/conf.acadia.2010.333
summary Recently, prototyping enabled by CNC technology has found its way into design practice where concepts can be quickly and economically tested through multiple design iterations that closely approximate the realities of oneto- one construction. This has lead to the promise of renewed research in tectonics and constructional techniques where the traditional concepts of craft and the joint, that were once married to the hand, can be rediscovered through the agency of mass customization. If we apply the lineage of the trait—a representational and cognitive tool to marry complex form with the exigencies of construction—pedagogical approaches can be developed that extend the current interest in intricate surface, structural morphology and geometry towards a robust materiality rooted in componentry, the joint, and part-to-whole relationships. This paper will introduce several threads from the twentieth century that have informed these tendencies in contemporary design practice, emerging from the well spring of Viollet-le-Duc. The thesis is supported by undergraduate model-based research employing digital design and fabrication techniques.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_90724 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002