CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 452

_id ascaad2010_161
id ascaad2010_161
authors Loemker, Thorsten Michael
year 2010
title Design and Simulation of Textile Building Elements
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 161-170
summary In this paper we examine the use of textile building elements and investigate on their potential scope of application in architecture. Other than commonly used for spanned or tent-like structures we concentrate on the use of textiles for folded, crinkled and procumbent assemblies, as these seem to correspond much better with the textiles´ inherent properties. On closer examination of these properties it becomes obvious that fabric primarily exists in a loose, uneven and irregular physicality that can be adjusted and configured into different states that match specific criteria. That is why fabric is mainly used for covering, protecting or hiding objects, e.g. as apparel for people. Only at a second glance does one recognize that textiles can be used for many other purposes such as collecting, separating, filtering or even healing. Thus, in the first instance of this research we examined customary usages and classified them into different categories that aided us to further develop practical application areas for the architectural domain. Subsequently to the fact that the shape of a textile might alter under the influence of forces, the further focus of this research lied on the appraisal of digital simulation techniques and simulation engines to provide sophisticated instruments for the generation of the associated time-based geometric form of the fabric. External elements that might drive this deformation process such as wind, temperature, precipitation, as well as static and dynamic building components were considered in the simulation process in order to generate visual output of the corresponding shapes. Studies about bipartite materials that can control the deformation process and might lead the textile beyond its primary functionality conclude this work.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia10_145
id acadia10_145
authors Briscoe, Danelle
year 2010
title Information Controlled Erosion
doi https://doi.org/10.52842/conf.acadia.2010.145
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 145-150
summary This paper documents research of a design process that interrelates a single information model to 5-axis, waterjet cutting technology. With the intention of creating an optimized design, data is streamed through a building information model that controls geometry parametrically by a component/system relationship. At the scale of a 4’x8’ panel, material properties and pattern variability act as underlying initiators of design rather than post-rational information. In a manner uncommon to the discipline, the information model is being used as a generative tool, rather than as one for mere documentation. The research assigns a limestone wall type to the panel—a material predominantly used in areas where it is indigenous and typically desirable for its texture, color, and thermal properties. The intention is to develop potentialities through material specificity in the information model’s conceptualization. The water-jet process is then used to erode the limestone to achieve varying fields of scalar voids. In addition, the thickness of wall cladding attenuates for figuration and interest. The final stone panels transition from a rain screen system to a solar screen that modulates light, thereby linking environmental intentions to current technological capabilities. The information model is exported for analysis of daylight and structural dynamic qualities and quantities as part of the workflow. Parameters within the information model database facilitate a dimensionally controlled iterative process. Moreover, fabricating with building materials via the information model expedites a design and makes possible for materiality to move beyond merely conceptual representation.
keywords digital fabrication, information model
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2011_p110
id cf2011_p110
authors Mcmeel, Dermott
year 2011
title I think Therefore i-Phone: The influence of Pervasive Media on Collaboration and Multi-Disciplinary Group Work
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 69-84.
summary The study of value and its transfer during the multi-disciplinary process of design is stable fodder for research; an entire issue of Design Studies has been devoted to Values in the Design Process. By scrutinising design meetings Dantec (2009) and Ball (2009) separately examine the mechanisms of value transfer between the agents involved in design (clients, designers, engineers). Dantec suggests this is best understood in terms of requirement, values and narrative; Ball proposes it should be viewed as a combination of "analogical reasoning" and "environmental simulation". If we look at Vitruvius and his primary architectural manual (Pollio 1960) we find values‚Äîin the form of firmitas, utilitas and venustas‚Äîembedded in this early codification of architectural practice. However, as much current research is restricted to design practice what occurs when value frameworks move between domains of cultural activity (such as design to construction and vice-versa) is not privileged with a comparably sizable body of research. This paper is concerned with the ongoing usage of pervasive media and cellular phones within communications and value transfer across the disciplinary threshold of design and construction. Through participation in a building project we analyse the subtleties of interaction between analogue communication such as sketches and digitally sponsored communication such as e-mail and mobile phone usage. Analysing the communications between the designer and builder during construction suggests it is also a creative process and the distinctions between design and construction processes are complex and often blurred. This work provides an observational basis for understanding mobile computing as a dynamic ‚Äòtuning‚Äô device‚Äîas hypothesized by Richard Coyne (2010)‚Äîthat ameliorates the brittleness of communication between different disciplines. A follow up study deploys ‚Äòdigital fieldnotes‚Äô (dfn) a bespoke iPhone application designed to test further suppositions regarding the influence exerted upon group working by mobile computing. Within collaboration individual communiqu_©s have different levels of importance depending on the specific topic of discussion and the contributing participant. This project furthers the earlier study; expanding upon what mobile computing is and enabling us to infer how these emergent devices affect collaboration. Findings from these two investigations suggest that the synchronous and asynchronous clamour of analogue and digital tools that surround design and construction are not exclusively inefficiencies or disruptions to be expunged. Observational evidence suggests they may provide contingency and continue to have value attending to the relationship between static components‚Äîand the avoidance of failure‚Äîwithin a complex system such as design and construction.
keywords collaboration, design, mobile computing, digital media
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_110
id acadia10_110
authors Di Raimo; Antonino
year 2010
title Architecture as Caregiver: Human Body - Information - Cognition
doi https://doi.org/10.52842/conf.acadia.2010.110
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 110-116
summary Recent studies in contemporary architecture have developed a variety of parameters regarding the information paradigm which have consequently brought different results and techniques to the process of architectural design. Thus, the emergence of an ecological thinking environment and its involvement in scientific matters has determined links moving beyond the conventional references that rely on information. It is characterized as an interconnected and dynamic interaction, concerning both a theoretical background and providing, at the same time, appropriate means in the architectural design process (Saggio, 2007, 117). The study is based on the assumption that Information Theory leads into a bidirectional model which is based on interaction. According to it, I want to emphasize the presence of the human body in both the architectural creation process and the use of architectural space. The aim of my study, is consequently an evaluation of how this corporeal view related to the human body, can be organized and interlinked in the process of architectural design. My hypothesis relies on the interactive process between the information paradigm and the ecological one. The integration of this corporeal view influences the whole process of architectural design, improving abilities and knowledge (Figure 1). I like to refer to this as a missing ring, as it occurs within a circular vital system with all its elements closely linked to each other and in particular, emphasizes architecture as a living being.
keywords Architecture, information paradigm, human body, corporeity, cognitive Science, cognition,circularity, living system
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ascaad2010_249
id ascaad2010_249
authors Hawker, Ronald; Dina Elkady and Thomas Tucker.
year 2010
title Not Just Another Pretty Face
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 249-260
summary Digital Heritage has gained popularity recently as means of dynamically representing and reconstructing historic buildings and cityscapes. Simultaneously this new medium of visualization affords another approach to examine human-virtual environment interaction and offers possibilities of exploiting virtual environments as educational tools. At Zayed University, a federal university primarily for women citizens of the United Arab Emirates, we have integrated student-faculty research and documented and reconstructed a number of historical buildings within the curriculum of the Department of Art and Design. We have further collaborated with the animation program at Winston Salem State University in North Carolina, utilizing the motion capture laboratory at the Center of Design Innovation to literally breathe life into these reconstructions. The primary idea is to contribute to the ongoing documentation of the country’s heritage through creating “responsive virtual heritage environments” where the spectator is actively engaged in exploring the digital space and gain certain degrees of control over the course and scheme of the dynamic experience. The process begins by introducing students to utilize the diverse capabilities of CAD and three dimensional computer applications and intertwine the technical skills they acquire to construct virtual computer models of indigenous built environments. The workflow between the different applications is crucial to stimulate students’ problem solving abilities and tame the application tools, specifically when constructing complex objects and structural details. In addition the spatial and temporal specificity different computer applications afford has proven useful in highlighting and analyzing the buildings’ function within the extreme climate of the country and their role in the political-economy, particularly in visualizing the ephemeral qualities of the architecture as they relate to passive cooling and the inter-relationships between built and natural environments. Light and time settings clarify shadow casting and explain the placement and orientation of buildings. Particle simulations demonstrate the harnessing of wind and rain both urban and rural settings. The quantitative data accumulated and charted through CAD and VR programs and geo-browsers can be integrated with qualitative data to create a more holistic analytical framework for understanding the complex nature of past settlement patterns. In addition, the dynamic nature of this integration creates a powerful educational tool. This paper reviews this ongoing research project with examples of reconstructions completed across the country, demonstrating analytical and educational possibilities through the integration of CAD programs with a range of other statistical, geographic, and visualization software.
series ASCAAD
email
last changed 2011/03/01 07:36

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2010_075
id ascaad2010_075
authors Schubert, Gerhard; Kaufmann Stefan and Petzold Frank
year 2010
title Project Wave 0.18
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 75-88
summary In recent years a number of projects have been emerged, in which the new possibilities of the computer as a design tool, have been used. Through the digital chain from design to manufacturing the efficiency has increased and allows the implementation of complex architectural structures. With all these new opportunities, also new challenges arise in the teaching and the educational concepts. The paper describes the detailed course concept and the didactic strategy using the example of a parametric designed roof structure, we designed, planed and build up in scale 1:1 within the main course. „Wendepunkt|e im Bauen“ (Turning point|s of building) is the name of an exhibition at the “Pinakothek der Moderne” in Spring 2010. In addition to contributions of the industrialization in the building industry from 1850 to the present day, the exhibition also serves as a platform, to demonstrate new possibilities of computer-aided parametric design and the closely related computer aided manufacturing (CAM). In this context, we took the chance to build a sculpture in Scale 1:1 to show the potential of a constant digital workflow and the digital fabrication. Through the digital chain from design to manufacturing, the efficiency has been increased by the computer and allows the implementation of new complex architectural structures. But the efficiency of the high-degree-automation through the use of computerized machines usually ends in the production of the components. Because this coincidence of the elements in the assembly often proves cost and time, the aim of the project was to optimize both, the production of components and their assembly as well. As part of the wintercourse 2009/2010 different aspects of automation have been reviewed and new solutions have been analyzed. Together with 15 students of the Faculty of Architecture the complete digital chain started with the first design ideas, about parametric programming through production and assembly had been researched, implemented and brought to reality. In the first steps, the students had to learn about the potential, but also about the problems coming with the digital-design and the attached digital-production. There for the course took part at our computerlab. In weekly workshops, all ideas have been implemented and tested directly in the 3-dimensional parametric model. And thanks to the interdisciplinary work with the Department of Structural Design also static factors had been considered, to optimize the form. Parallel to the digital form-finding process, the first prototypes have been produced by the students. By using the chairs 3D-CNC-Mills we were able to check the programmed connection detail in reality and apply the so learned lessons to the further development. After nearly 3 month of research, designing, planning and programming, we were able to produce the over 1000 different parts in only 4 days. By developing a special pre-stressed structure and connection detail it was also possible, to assemble the whole structure (13.5m x 4.5m x 4m) in only one day. The close connection between digital design (CAD) and digital manufacturing (CAM) is an important point of our doctrine. By the fact, that the students operate the machines themselves, but also implement projects on a scale of 1:1, they learn to independently evaluate these new tools and to use them in a meaningful way.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia10_340
id acadia10_340
authors Tamke, Martin; Riiber, Jacob; Jungjohann, Hauke
year 2010
title Generated Lamella
doi https://doi.org/10.52842/conf.acadia.2010.340
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 340-347
summary The hierarchical organization of information is dominant in the setup of tectonic structures. In order to overcome the inherent limitations of these systems, self-organization is proposed as a means for future design. The paper exemplifies this within the research project “Lamel la Flock”. The research takes its point of departure in the structural abilities of the wooden Zollinger system: a traditional structural lamella system distributed as a woven pattern of interconnected beams. Where the original system has a very limited set of achievable geometries our research introduces an understanding of beam elements as autonomous entities with sensorymotor behaviour. By this means freeform structures can be achieved Through computation and methods of self-organization, the project investigates how to design and build with a system based on multiple and circular dependencies. Hereby the agent system negotiates between design intent, tectonic needs, and production. The project demonstrates how real-time interactive modeling can be hybridized with agent–based design strategies and how this environment can be linked to physical production. The use of knowledge embedded into the system as well as the flow of information between dynamic processes, Finite Element Calculation and machinery was key for linking the speculative with the physical.
keywords agent based systems, digital fabrication, aware models, wooden structures, industrial collaboration, 1:1 demonstrator
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
doi https://doi.org/10.52842/conf.acadia.2010.327
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia10_263
id acadia10_263
authors Beaman, Michael Leighton; Bader, Stefan
year 2010
title Responsive Shading | Intelligent Façade Systems
doi https://doi.org/10.52842/conf.acadia.2010.263
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 263-270
summary As issues of sustainability gain traction for architects, methodologies for designing, analyzing, and calibrating design solutions have emerged as essential areas of research and development. A number of approaches have been pursued with regard to embedding data into the design process, most fall into one of two approaches to research. The first approach is to mediate environmental impact at the level of applied technology; the second alters building methods and material construction, generating efficient energy use. However, few approaches deal with the crafting of relationships between information and performance on an architectural level. We will examine an approach focused on understanding how crafting relationships between information and design can move architecture towards achieving sustainability. In developing this approach, we created a data-driven design methodology spanning from design inception to construction. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. By contextualizing the solutions generated, we were able design though a set of specific and controlled responses rather than as a singular solution. Information utilization requires a new kind of craft that moves beyond instances into relationships and offers performance sensitive issues in design a focused trajectory. We applied this method to the research and development of a responsive shading structure built in conjunction with a thermal testing lab for two test locations – Austin, Texas (Figure. 1 and 2) and Munich, Germany. The following paper chronicles the design and construction at the Texas site over an academic semester.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac20108101
id ijac20108101
authors Phan, Viet Toan; Seung Yeon Choo
year 2010
title Augmented Reality-Based Education and Fire Protection for Traditional Korean Buildings
source International Journal of Architectural Computing vol. 8 - no. 1, 75-91
summary This study examines an application of Augmented Reality technology (AR) for Korean Cultural Traditional Buildings, specifically, the Namdaemun Gate, "National Treasure No 1" of the Republic of Korea. Unfortunately, in February 2008, the Namdaemun Gate burned down, despite the efforts of many firemen, as the main difficulty was getting the fire under control without any structural knowledge of the wooden building. Hence, with the great advances in digital technology, an application of virtual technical information to traditional buildings is needed, and the new technology of AR offers many such advantages for digital architectural design and construction fields. While AR is already being considered as new design approach for architecture, outdoor AR is another practical application that can take advantage of new wearable computer equipment (Head-mounted display also know as HMD, position and orientation sensors, and mobile computing) to superimpose virtual graphics of traditional buildings (in this case, Namdaemun Gate) in a real outdoor scene. Plus, outdoor AR also allows the user to move freely around and inside a 3D virtual construction, thereby offering important training opportunities, for example, specific structural information in the case of firemen and mission planning in the case of a real-life emergency. In this example, the proposed outdoor AR system is expected to provide important educational information on traditional wooden building for architects, archaeologists, and engineers, while also assisting firemen to protect such special buildings.
series journal
last changed 2019/05/24 09:55

_id ascaad2010_241
id ascaad2010_241
authors Aboreeda, Faten; Dina Taha
year 2010
title Using Case-Based Reasoning to Aid Sustainable Design
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 241-246
summary Since so far there exists only one planet, sustainable design is considered the (ethical) future in all fields of design. Although both architecture and construction are being considered major emitters of green house gases, a wise design not only can lead to minimizing this impact but it can also lead to restoring and regenerating the environment to a sustainable state. This paper presents an on-going research that aims at simplifying the elements and facilitating the process of sustainable design by using case-based reasoning. This is achieved through learning from past experiences; both good and bad ones, by providing a database application with a process-friendly interface which divides the main pillars of sustainable design into categories. Each building contains different stories related to different sustainable related issues. Each story can be repeated in /linked to many buildings. By providing designers with those past experiences, it is believed that deeper-studied designs can be more easily developed. Also a deeper analysis and understanding can be further implemented and produced with less effort for experienced and non-experienced architects in sustainable design. This would also decrease the consumption of time during the design process and encourage even more designers to integrate the sustainability concept into more designs. This research discusses the influence of sustainable design within the architectural domain, and suggests a computer application that aids architects during the preliminary design processes.
series ASCAAD
email
last changed 2011/03/01 07:36

_id sigradi2010_244
id sigradi2010_244
authors Bunster, Victor
year 2010
title Between Thermal Efficiency and Formal Expression: Tropism as a Method for Layering Control in Generative Design
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 244-247
summary The definition of architectonic features often requires negotiation between diverse classes of design conditions merging in particular elements. The use of encompassing concepts opens possible approaches for layering control between these assorted factors. This study presents a method for the implementation of tropism as a conceptual gathering procedure in social housing windows definition, aiming to enhance the relationship between building and context in terms of spatial comfort and formal expression.
keywords tropism, generative architecture, diffusion limited aggregation, rhetorical structure theory, social housing
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2010_042
id caadria2010_042
authors Celento, David
year 2010
title Open-source, parametric architecture to propagate hyper-dense, sustainable urban communities: parametric urban dwellings for the experience economy
doi https://doi.org/10.52842/conf.caadria.2010.443
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 443-452
summary Rapid developments in societal, technological, and natural systems suggest profound changes ahead if research in panarchical systems (Holling, 2001) is to be believed. Panarchy suggests that systems, both natural and man-made, rise to the point of vulnerability then fail due to disruptive forces in a process of ‘creative destruction.’ This sequence allows for radical, and often unpredictable, renewal. Pressing sustainability concerns, burgeoning urban growth, and emergent ‘green manufacturing’ laws, suggest that future urban dwellings are headed toward Gladwell’s ‘tipping point’ (2002). Hyper-dense, sustainable, urban communities that employ open-source standards, parametric software, and web-based configurators are the new frontier for venerable visions. Open-source standards will permit the design, manufacture, and sale of highly diverse, inter-operable components to create compact urban living environments that are technologically sophisticated, sustainable, and mobile. These mass-customised dwellings, akin to branded consumer goods, will address previous shortcomings for prefabricated, mobile dwellings by stimulating consumer desire in ways that extend the arguments of both Joseph Pine (1992) and Anna Klingman (2007). Arguments presented by authors Makimoto and Manners (1997) – which assert that the adoption of digital and mobile technologies will create large-scale societal shifts – will be extended with several solutions proposed.
keywords Mass customisation; urban dwellings; open source standards; parametric design; sustainability
series CAADRIA
email
last changed 2022/06/07 07:55

_id architectural_intelligence2023_10
id architectural_intelligence2023_10
authors Cheng Bi Duan, Su Yi Shen, Ding Wen Bao & Xin Yan
year 2023
title Innovative design solutions for contemporary Tou-Kung based on topological optimisation
doi https://doi.org/https://doi.org/10.1007/s44223-023-00028-x
source Architectural Intelligence Journal
summary Tou-Kung, which is pronounced in Chinese and known as Bracket Set (Liang & Fairbank, A pictorial history of Chinese architecture, 1984), is a vital support component in the Chinese traditional wooden tectonic systems. It is located between the column and the beam and connects the eave and pillar, making the heavy roof extend out of the eaves longer. The development of Tou-Kung is entirely a microcosm of the development of ancient Chinese architecture; the aesthetic structure and Asian artistic temperament behind Tou-Kung make it gradually become the cultural and spiritual symbol of traditional Chinese architecture. In the contemporary era, inheriting and developing Tou-Kung has become an essential issue. Several architects have attempted to employ new materials and techniques to integrate the traditional Tou-Kung into modern architectural systems, such as the China Pavilion at the 2010 World Expo and Yusuhara Wooden Bridge Museum. This paper introduces the topological optimisation method bi-directional evolutionary structural optimisation (BESO) for form-finding. BESO method is one of the most popular topology optimisation methods widely employed in civil engineering and architecture. Through analyzing the development trend of Tou-Kung and mechanical structure, the authors integrate 2D and 3D optimisation methods and apply the hybrid methods to form-finding. Meanwhile, mortise and tenon joint used to create stable connections with components of Tou-Kung are retained. This research aims to design a new Tou-Kung corresponding to “structural performance-based aesthetics”. The workflow proposed in this paper is valuable for Architrave and other traditional building components.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id acadia10_218
id acadia10_218
authors Chok, Kermin; Donofrio, Mark
year 2010
title Structure at the Velocity of Architecture
doi https://doi.org/10.52842/conf.acadia.2010.218
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 218-226
summary This paper outlines a digital design workflow, utilized by the authors, which actively links the geometry platforms being utilized by architects with tools for structural analysis, design, form-finding, and optimization. This workflow leads to an accelerated generation and transfer of information to help guide and inform the design process. The engineering team is thus empowered to augment the architect’s design by ensuring that the design team is conscious of the structural implications of design decisions throughout the design process. A crucial element of this design process has been the dynamic linkage of parametric geometry models with structural analysis and design tools. This reduces random errors in model generation and allows more time for critical analysis evaluation. However, the ability to run a multitude of options in a compressed time frame has led to ever increasing data sets. A key component of this structural engineering workflow has become the visualization and rigorous interpretation of the data generated by the analysis process. The authors have explored visualization techniques to distill the complex analysis results into graphics that are easily discernable by all members of the design team.
keywords Workflows, Structure, Collaboration, Visualizations, Analysis
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia10_117
id acadia10_117
authors Crotch, Joanna; Mantho, Robert; Horner, Martyn
year 2010
title Social Spatial Genesis: Activity Centered Space Making
doi https://doi.org/10.52842/conf.acadia.2010.117
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 117-124
summary Digital technologies and processes have been used to generate architectural form for over two decades. Recent advances in digital technologies have allowed virtual digital environments to be constructed from physical movement. But can a bridge that connects the physical and virtual realms be developed? Can this, currently arbitrary form making be grounded in human activity and subsequently be integrated in to real time, space, and place. This research asks how space generated from the process of digital morphogenesis can be related to meaning beyond just the creation of form. Existing research asks how new form can be discovered, or what material and structural possibilities can be derived from form, through these morphological processes. The aim of this research project is to complete the loop, physical–virtual–physical, and to connect these digital processes to meaning through human activity. Its aim is to discover the consequences of generated spatial envelopes that are manipulated through digital morphogenesis and related to specific human activity, in the pursuit of possibilities for a digitally generated architecture that is socially engaged. This is not random form finding, wherein architecture tries to imitate biological processes or form, but form finding that is connected to a primary architectural concern, how is the architecture being used by humans.
keywords Social digital morphogenesis, event based, motion capture
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id sigradi2010_347
id sigradi2010_347
authors de Souza, Santos Taís; Leão de Amorim Arivaldo
year 2010
title Modelos dinâmicos para visualização arquitetônica e urbana: limites e possibilidades [Dynamic models for urban and architectural visualization: limits and possibilities]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 347-350
summary In this article we discuss the use of photographic panoramas in the capture of urban space and architecture. The picture is a dynamic and interactive model, which has been used as a tool that assists the apprehension of space, due to its high level of realism. When associated with the virtual tour, this tool is potentialized due to the amount of information that can be added to the application. To illustrate this analysis, two examples were offered at different scales: one aimed at the capture of urban spaces and the second aimed at architectural spaces. In doing so it was possible to compare results and discuss the potential of the tool.
keywords dynamic models; urban visualization, interactivity, virtual tour, photographic panoramas
series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia10_372
id acadia10_372
authors Dierichs, Karola; Menges, Achim
year 2010
title Material Computation in Architectural Aggregate Systems
doi https://doi.org/10.52842/conf.acadia.2010.372
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 372-378
summary Aggregates are defined as large amounts of elements being in loose contact. In architecture they are mainly known as an additive in concrete construction. Relatively few examples use aggregates in their unbound form as an architectural material system in their own right. The investigation of potential architectural applications however is both a very relevant and unexplored branch of design research. Loose granular systems are inherently different from other architectural construction systems. One of the most decisive distinctions lies in the way information on those granular architectural systems is being generated, processed, and integrated into the design process. Several mathematical methods have been developed to numerically model granular behaviour. However, the need and also the potential of using so-called ,material’ computation is specifically relevant with aggregates, as much of their behaviour is still not being described in these mathematical models. This paper will present the current outcome of a doctorate research on aggregate architectures with a focus on information processing in machine and material computation. In the first part, it will introduce definitions of material and machine computation. In the second part, the way machine computation is employed in modelling granulates will be introduced. The third part will review material computation in granular systems. In the last part, a concrete example of an architectural aggregate model will be explained with regard to the given definition of material computation. Conclusively a comparative overview between material and machine computation in aggregate architectures will be given and further areas of development will be outlined.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia20_464
id acadia20_464
authors Elberfeld, Nathaniel; Tessmer, Lavender; Waller, Alexandra
year 2020
title A Case for Lace
doi https://doi.org/10.52842/conf.acadia.2020.1.464
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 464-473.
summary Textiles and architecture share a long, intertwined history from the earliest enclosures to contemporary high-tech tensile structures. In the Four Elements of Architecture, Gottfried Semper (2010) posited wickerwork and carpet enclosures to be the essential origins of architectural space. More recently, architectural designers are capitalizing on the characteristics of textiles that are difficult or impossible to reproduce with other material systems: textiles are pliable, scalable, and materially efficient. As industrial knitting machines join robotic systems in architecture schools with fabrication- forward agendas, much of the recent developments in textile-based projects make use of knitting. In this paper, we propose an alternative textile technique, lacemaking, for architectural fabrication. We present a method for translating traditional lacemaking techniques to an architectural scale and explore its relative advantages over other textiles. In particular, we introduce bobbin lace and describe its steps both in traditional production and at an architectural scale. We use the unique properties of bobbin lace to form workflows for fabrication and computational analysis. An example of computational analysis demonstrates the ability to optimize lace-based designs towards particular labor objectives. We discuss opportunities for automation and consider the broader implications of understanding a material system relative to the cost of labor to produce designs using it.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_456993 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002